Crypto++  7.0
Free C++ class library of cryptographic schemes
luc.h
Go to the documentation of this file.
1 // luc.h - originally written and placed in the public domain by Wei Dai
2 
3 /// \file luc.h
4 /// \brief Classes for the LUC cryptosystem
5 /// \details This class is here for historical and pedagogical interest. It has no practical advantages over other
6 /// trapdoor functions and probably shouldn't be used in production software. The discrete log based LUC schemes
7 /// defined later in this .h file may be of more practical interest.
8 /// \since Crypto++ 2.1
9 
10 #ifndef CRYPTOPP_LUC_H
11 #define CRYPTOPP_LUC_H
12 
13 #include "cryptlib.h"
14 #include "gfpcrypt.h"
15 #include "integer.h"
16 #include "algebra.h"
17 #include "secblock.h"
18 
19 #if CRYPTOPP_MSC_VERSION
20 # pragma warning(push)
21 # pragma warning(disable: 4127 4189)
22 #endif
23 
24 #include "pkcspad.h"
25 #include "integer.h"
26 #include "oaep.h"
27 #include "dh.h"
28 
29 #include <limits.h>
30 
31 NAMESPACE_BEGIN(CryptoPP)
32 
33 /// \brief The LUC function.
34 /// \details This class is here for historical and pedagogical interest. It has no practical advantages over other
35 /// trapdoor functions and probably shouldn't be used in production software. The discrete log based LUC schemes
36 /// defined later in this .h file may be of more practical interest.
37 /// \since Crypto++ 2.1
38 class LUCFunction : public TrapdoorFunction, public PublicKey
39 {
40  typedef LUCFunction ThisClass;
41 
42 public:
43  virtual ~LUCFunction() {}
44 
45  /// \brief Initialize a LUC public key with {n,e}
46  /// \param n the modulus
47  /// \param e the public exponent
48  void Initialize(const Integer &n, const Integer &e)
49  {m_n = n; m_e = e;}
50 
51  void BERDecode(BufferedTransformation &bt);
52  void DEREncode(BufferedTransformation &bt) const;
53 
54  Integer ApplyFunction(const Integer &x) const;
55  Integer PreimageBound() const {return m_n;}
56  Integer ImageBound() const {return m_n;}
57 
58  bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
59  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
60  void AssignFrom(const NameValuePairs &source);
61 
62  // non-derived interface
63  const Integer & GetModulus() const {return m_n;}
64  const Integer & GetPublicExponent() const {return m_e;}
65 
66  void SetModulus(const Integer &n) {m_n = n;}
67  void SetPublicExponent(const Integer &e) {m_e = e;}
68 
69 protected:
70  Integer m_n, m_e;
71 };
72 
73 /// \brief The LUC inverse function.
74 /// \details This class is here for historical and pedagogical interest. It has no practical advantages over other
75 /// trapdoor functions and probably shouldn't be used in production software. The discrete log based LUC schemes
76 /// defined later in this .h file may be of more practical interest.
77 /// \since Crypto++ 2.1
79 {
81 
82 public:
83  virtual ~InvertibleLUCFunction() {}
84 
85  /// \brief Create a LUC private key
86  /// \param rng a RandomNumberGenerator derived class
87  /// \param modulusBits the size of the modulus, in bits
88  /// \param eStart the desired starting public exponent
89  /// \details Initialize() creates a new keypair using a starting public exponent of 17.
90  /// \details This function overload of Initialize() creates a new keypair because it
91  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
92  /// then use one of the other Initialize() overloads.
93  void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits, const Integer &eStart=17);
94 
95  /// \brief Initialize a LUC private key with {n,e,p,q,dp,dq,u}
96  /// \param n modulus
97  /// \param e public exponent
98  /// \param p first prime factor
99  /// \param q second prime factor
100  /// \param u q<sup>-1</sup> mod p
101  /// \details This Initialize() function overload initializes a private key from existing parameters.
102  void Initialize(const Integer &n, const Integer &e, const Integer &p, const Integer &q, const Integer &u)
103  {m_n = n; m_e = e; m_p = p; m_q = q; m_u = u;}
104 
105  void BERDecode(BufferedTransformation &bt);
106  void DEREncode(BufferedTransformation &bt) const;
107 
109 
110  bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
111  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
112  void AssignFrom(const NameValuePairs &source);
113  /*! parameters: (ModulusSize, PublicExponent (default 17)) */
114  void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
115 
116  // non-derived interface
117  const Integer& GetPrime1() const {return m_p;}
118  const Integer& GetPrime2() const {return m_q;}
119  const Integer& GetMultiplicativeInverseOfPrime2ModPrime1() const {return m_u;}
120 
121  void SetPrime1(const Integer &p) {m_p = p;}
122  void SetPrime2(const Integer &q) {m_q = q;}
123  void SetMultiplicativeInverseOfPrime2ModPrime1(const Integer &u) {m_u = u;}
124 
125 protected:
126  Integer m_p, m_q, m_u;
127 };
128 
129 /// \brief LUC cryptosystem
130 /// \since Crypto++ 2.1
131 struct LUC
132 {
133  static std::string StaticAlgorithmName() {return "LUC";}
134  typedef LUCFunction PublicKey;
136 };
137 
138 /// \brief LUC encryption scheme
139 /// \tparam STANDARD signature standard
140 /// \details This class is here for historical and pedagogical interest. It has no practical advantages over other
141 /// trapdoor functions and probably shouldn't be used in production software. The discrete log based LUC schemes
142 /// defined later in this .h file may be of more practical interest.
143 /// \since Crypto++ 2.1
144 template <class STANDARD>
145 struct LUCES : public TF_ES<LUC, STANDARD>
146 {
147 };
148 
149 /// \brief LUC signature scheme with appendix
150 /// \tparam STANDARD signature standard
151 /// \tparam H hash transformation
152 /// \details This class is here for historical and pedagogical interest. It has no practical advantages over other
153 /// trapdoor functions and probably shouldn't be used in production software. The discrete log based LUC schemes
154 /// defined later in this .h file may be of more practical interest.
155 /// \since Crypto++ 2.1
156 template <class STANDARD, class H>
157 struct LUCSS : public TF_SS<LUC, STANDARD, H>
158 {
159 };
160 
161 // analogous to the RSA schemes defined in PKCS #1 v2.0
162 typedef LUCES<OAEP<SHA1> >::Decryptor LUCES_OAEP_SHA_Decryptor;
163 typedef LUCES<OAEP<SHA1> >::Encryptor LUCES_OAEP_SHA_Encryptor;
164 
167 
168 // ********************************************************
169 
170 /// \brief LUC GroupParameters precomputation
171 /// \details No actual precomputation is performed
172 /// \since Crypto++ 2.1
174 {
175 public:
176  virtual ~DL_GroupPrecomputation_LUC() {}
177 
178  const AbstractGroup<Element> & GetGroup() const {CRYPTOPP_ASSERT(false); throw 0;}
180  void DEREncodeElement(BufferedTransformation &bt, const Element &v) const {v.DEREncode(bt);}
181 
182  // non-inherited
183  void SetModulus(const Integer &v) {m_p = v;}
184  const Integer & GetModulus() const {return m_p;}
185 
186 private:
187  Integer m_p;
188 };
189 
190 /// \brief LUC Precomputation
191 /// \since Crypto++ 2.1
193 {
194 public:
195  virtual ~DL_BasePrecomputation_LUC() {}
196 
197  // DL_FixedBasePrecomputation
198  bool IsInitialized() const {return m_g.NotZero();}
199  void SetBase(const DL_GroupPrecomputation<Element> &group, const Integer &base)
200  {CRYPTOPP_UNUSED(group); m_g = base;}
201  const Integer & GetBase(const DL_GroupPrecomputation<Element> &group) const
202  {CRYPTOPP_UNUSED(group); return m_g;}
203  void Precompute(const DL_GroupPrecomputation<Element> &group, unsigned int maxExpBits, unsigned int storage)
204  {CRYPTOPP_UNUSED(group); CRYPTOPP_UNUSED(maxExpBits); CRYPTOPP_UNUSED(storage);}
205  void Load(const DL_GroupPrecomputation<Element> &group, BufferedTransformation &storedPrecomputation)
206  {CRYPTOPP_UNUSED(group); CRYPTOPP_UNUSED(storedPrecomputation);}
207  void Save(const DL_GroupPrecomputation<Element> &group, BufferedTransformation &storedPrecomputation) const
208  {CRYPTOPP_UNUSED(group); CRYPTOPP_UNUSED(storedPrecomputation);}
209  Integer Exponentiate(const DL_GroupPrecomputation<Element> &group, const Integer &exponent) const;
210  Integer CascadeExponentiate(const DL_GroupPrecomputation<Element> &group, const Integer &exponent, const DL_FixedBasePrecomputation<Integer> &pc2, const Integer &exponent2) const
211  {
212  CRYPTOPP_UNUSED(group); CRYPTOPP_UNUSED(exponent); CRYPTOPP_UNUSED(pc2); CRYPTOPP_UNUSED(exponent2);
213  // shouldn't be called
214  throw NotImplemented("DL_BasePrecomputation_LUC: CascadeExponentiate not implemented");
215  }
216 
217 private:
218  Integer m_g;
219 };
220 
221 /// \brief LUC GroupParameters specialization
222 /// \since Crypto++ 2.1
223 class DL_GroupParameters_LUC : public DL_GroupParameters_IntegerBasedImpl<DL_GroupPrecomputation_LUC, DL_BasePrecomputation_LUC>
224 {
225 public:
226  virtual ~DL_GroupParameters_LUC() {}
227 
228  // DL_GroupParameters
229  bool IsIdentity(const Integer &element) const {return element == Integer::Two();}
230  void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
231  Element MultiplyElements(const Element &a, const Element &b) const
232  {
233  CRYPTOPP_UNUSED(a); CRYPTOPP_UNUSED(b);
234  throw NotImplemented("LUC_GroupParameters: MultiplyElements can not be implemented");
235  }
236  Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const
237  {
238  CRYPTOPP_UNUSED(element1); CRYPTOPP_UNUSED(exponent1); CRYPTOPP_UNUSED(element2); CRYPTOPP_UNUSED(exponent2);
239  throw NotImplemented("LUC_GroupParameters: MultiplyElements can not be implemented");
240  }
241 
242  // NameValuePairs interface
243  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
244  {
245  return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
246  }
247 
248 private:
249  int GetFieldType() const {return 2;}
250 };
251 
252 /// \brief GF(p) group parameters that default to safe primes
253 /// \since Crypto++ 2.1
255 {
256 public:
258 
259 protected:
260  unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
261 };
262 
263 /// \brief LUC HMP signature algorithm
264 /// \since Crypto++ 2.1
266 {
267 public:
268  CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "LUC-HMP";}
269 
270  virtual ~DL_Algorithm_LUC_HMP() {}
271 
272  void Sign(const DL_GroupParameters<Integer> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const;
273  bool Verify(const DL_GroupParameters<Integer> &params, const DL_PublicKey<Integer> &publicKey, const Integer &e, const Integer &r, const Integer &s) const;
274 
275  size_t RLen(const DL_GroupParameters<Integer> &params) const
276  {return params.GetGroupOrder().ByteCount();}
277 };
278 
279 /// \brief LUC signature keys
280 /// \since Crypto++ 2.1
282 {
286 };
287 
288 /// \brief LUC-HMP, based on "Digital signature schemes based on Lucas functions" by Patrick Horster, Markus Michels, Holger Petersen
289 /// \tparam H hash transformation
290 /// \details This class is here for historical and pedagogical interest. It has no practical advantages over other
291 /// trapdoor functions and probably shouldn't be used in production software. The discrete log based LUC schemes
292 /// defined later in this .h file may be of more practical interest.
293 /// \since Crypto++ 2.1
294 template <class H>
295 struct LUC_HMP : public DL_SS<DL_SignatureKeys_LUC, DL_Algorithm_LUC_HMP, DL_SignatureMessageEncodingMethod_DSA, H>
296 {
297 };
298 
299 /// \brief LUC encryption keys
300 /// \since Crypto++ 2.1
302 {
306 };
307 
308 /// \brief LUC Integrated Encryption Scheme
309 /// \tparam COFACTOR_OPTION cofactor multiplication option
310 /// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
311 /// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
312 /// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
313 /// \sa CofactorMultiplicationOption
314 /// \since Crypto++ 2.1, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
315 template <class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
316 struct LUC_IES
317  : public DL_ES<
318  DL_CryptoKeys_LUC,
319  DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
320  DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
321  DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
322  LUC_IES<> >
323 {
324  CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "LUC-IES";} // non-standard name
325 };
326 
327 // ********************************************************
328 
329 /// \brief LUC-DH
331 
332 NAMESPACE_END
333 
334 #if CRYPTOPP_MSC_VERSION
335 # pragma warning(pop)
336 #endif
337 
338 #endif
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits, const Integer &eStart=17)
Create a LUC private key.
Definition: luc.cpp:137
bool NotZero() const
Determines if the Integer is non-0.
Definition: integer.h:333
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
Definition: luc.cpp:114
Trapdoor Function (TF) encryption scheme.
Definition: pubkey.h:2223
bool IsInitialized() const
Determines whether this object is initialized.
Definition: luc.h:198
LUC signature keys.
Definition: luc.h:281
LUC HMP signature algorithm.
Definition: luc.h:265
DL_GroupPrecomputation interface.
Definition: eprecomp.h:19
void DEREncode(BufferedTransformation &bt) const
Encode in DER format.
Definition: integer.cpp:3426
void Precompute(const DL_GroupPrecomputation< Element > &group, unsigned int maxExpBits, unsigned int storage)
Perform precomputation.
Definition: luc.h:203
LUC Integrated Encryption Scheme.
Definition: luc.h:316
Converts an enumeration to a type suitable for use as a template parameter.
Definition: cryptlib.h:133
Abstract base classes that provide a uniform interface to this library.
LUC GroupParameters specialization.
Definition: luc.h:223
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: luc.cpp:213
virtual Integer GetGroupOrder() const
Retrieves the order of the group.
Definition: pubkey.h:879
Interface for random number generators.
Definition: cryptlib.h:1353
LUC cryptosystem.
Definition: luc.h:131
Discrete Log (DL) encryption scheme.
Definition: pubkey.h:2298
Classes for performing mathematics over different fields.
void Save(const DL_GroupPrecomputation< Element > &group, BufferedTransformation &storedPrecomputation) const
Save precomputation for later use.
Definition: luc.h:207
LUC Precomputation.
Definition: luc.h:192
Interface for buffered transformations.
Definition: cryptlib.h:1568
Interface for private keys.
Definition: cryptlib.h:2400
Interface for Discrete Log (DL) public keys.
Definition: pubkey.h:1028
LUC encryption keys.
Definition: luc.h:301
GF(p) group parameters that default to safe primes.
Definition: luc.h:254
Discrete Log (DL) signature scheme.
Definition: pubkey.h:2275
unsigned int ByteCount() const
Determines the number of bytes required to represent the Integer.
Definition: integer.cpp:3331
Classes and functions for secure memory allocations.
void SetBase(const DL_GroupPrecomputation< Element > &group, const Integer &base)
Set the base element.
Definition: luc.h:199
Applies the inverse of the trapdoor function.
Definition: pubkey.h:178
LUC signature scheme with appendix.
Definition: luc.h:157
Classes for PKCS padding schemes.
A method was called which was not implemented.
Definition: cryptlib.h:221
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
Calculates the inverse of an element.
Definition: luc.cpp:172
LUC encryption scheme.
Definition: luc.h:145
Interface for Elgamal-like signature algorithms.
Definition: pubkey.h:1366
Classes for Diffie-Hellman key exchange.
const AbstractGroup< Element > & GetGroup() const
Retrieves AbstractGroup interface.
Definition: luc.h:178
void DEREncodeElement(BufferedTransformation &bt, const Element &v) const
Encodes element in DER format.
Definition: luc.h:180
Element BERDecodeElement(BufferedTransformation &bt) const
Decodes element in DER format.
Definition: luc.h:179
Multiple precision integer with arithmetic operations.
Definition: integer.h:49
Integer-based GroupParameters default implementation.
Definition: gfpcrypt.h:119
static const Integer & Two()
Integer representing 2.
Definition: integer.cpp:4859
Applies the trapdoor function.
Definition: pubkey.h:125
Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
Check this object for errors.
Definition: luc.cpp:180
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:60
Diffie-Hellman domain.
Definition: dh.h:25
Abstract group.
Definition: algebra.h:26
Classes for optimal asymmetric encryption padding.
The LUC inverse function.
Definition: luc.h:78
DL_FixedBasePrecomputation interface.
Definition: eprecomp.h:60
Discrete Log (DL) public key in GF(p) groups.
Definition: gfpcrypt.h:460
Integer PreimageBound() const
Returns the maximum size of a message before the trapdoor function is applied.
Definition: luc.h:55
Integer ImageBound() const
Returns the maximum size of a message after the trapdoor function is applied.
Definition: luc.h:56
void Load(const DL_GroupPrecomputation< Element > &group, BufferedTransformation &storedPrecomputation)
Retrieve previously saved precomputation.
Definition: luc.h:205
Integer CascadeExponentiate(const DL_GroupPrecomputation< Element > &group, const Integer &exponent, const DL_FixedBasePrecomputation< Integer > &pc2, const Integer &exponent2) const
Exponentiates an element.
Definition: luc.h:210
LUC-HMP, based on "Digital signature schemes based on Lucas functions" by Patrick Horster...
Definition: luc.h:295
Discrete Log (DL) private key in GF(p) groups.
Definition: gfpcrypt.h:496
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: luc.cpp:222
void Initialize(const Integer &n, const Integer &e, const Integer &p, const Integer &q, const Integer &u)
Initialize a LUC private key with {n,e,p,q,dp,dq,u}.
Definition: luc.h:102
Multiple precision integer with arithmetic operations.
The LUC function.
Definition: luc.h:38
LUC GroupParameters precomputation.
Definition: luc.h:173
Interface for public keys.
Definition: cryptlib.h:2395
Crypto++ library namespace.
bool Verify(const DL_GroupParameters< Integer > &params, const DL_PublicKey< Integer > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
Definition: luc.cpp:30
size_t RLen(const DL_GroupParameters< Integer > &params) const
Retrieve R length.
Definition: luc.h:275
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: luc.h:243
DH_Domain< DL_GroupParameters_LUC_DefaultSafePrime > LUC_DH
LUC-DH.
Definition: luc.h:330
bool IsIdentity(const Integer &element) const
Determines if an element is an identity.
Definition: luc.h:229
void Sign(const DL_GroupParameters< Integer > &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
Definition: luc.cpp:23
void Initialize(const Integer &n, const Integer &e)
Initialize a LUC public key with {n,e}.
Definition: luc.h:48
Interface for retrieving values given their names.
Definition: cryptlib.h:291
const Integer & GetBase(const DL_GroupPrecomputation< Element > &group) const
Get the base element.
Definition: luc.h:201
Template implementing constructors for public key algorithm classes.
Definition: pubkey.h:2134
Trapdoor Function (TF) Signature Scheme.
Definition: pubkey.h:2249