Crypto++  8.8
Free C++ class library of cryptographic schemes
gfpcrypt.h
Go to the documentation of this file.
1 // gfpcrypt.h - originally written and placed in the public domain by Wei Dai
2 // RFC6979 deterministic signatures added by Douglas Roark
3 // ECGDSA added by Jeffrey Walton
4 
5 /// \file gfpcrypt.h
6 /// \brief Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
7 
8 #ifndef CRYPTOPP_GFPCRYPT_H
9 #define CRYPTOPP_GFPCRYPT_H
10 
11 #include "config.h"
12 
13 #if CRYPTOPP_MSC_VERSION
14 # pragma warning(push)
15 # pragma warning(disable: 4189 4231 4275)
16 #endif
17 
18 #include "cryptlib.h"
19 #include "pubkey.h"
20 #include "integer.h"
21 #include "modexppc.h"
22 #include "algparam.h"
23 #include "smartptr.h"
24 #include "sha.h"
25 #include "asn.h"
26 #include "hmac.h"
27 #include "misc.h"
28 
29 NAMESPACE_BEGIN(CryptoPP)
30 
32 
33 /// \brief Integer-based GroupParameters specialization
34 class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> >
35 {
37 
38 public:
40 
41  /// \brief Initialize a group parameters over integers
42  /// \param params the group parameters
44  {Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
45 
46  /// \brief Create a group parameters over integers
47  /// \param rng a RandomNumberGenerator derived class
48  /// \param pbits the size of p, in bits
49  /// \details This function overload of Initialize() creates a new private key because it
50  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
51  /// then use one of the other Initialize() overloads.
52  void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
53  {GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
54 
55  /// \brief Initialize a group parameters over integers
56  /// \param p the modulus
57  /// \param g the generator
58  void Initialize(const Integer &p, const Integer &g)
59  {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
60 
61  /// \brief Initialize a group parameters over integers
62  /// \param p the modulus
63  /// \param q the subgroup order
64  /// \param g the generator
65  void Initialize(const Integer &p, const Integer &q, const Integer &g)
66  {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
67 
68  // ASN1Object interface
71 
72  /// \brief Generate a random key
73  /// \param rng a RandomNumberGenerator to produce keying material
74  /// \param alg additional initialization parameters
75  /// \details Recognised NameValuePairs are ModulusSize and
76  /// SubgroupOrderSize (optional)
77  /// \throw KeyingErr if a key can't be generated or algorithm parameters
78  /// are invalid
80 
81  /// \brief Get a named value
82  /// \param name the name of the object or value to retrieve
83  /// \param valueType reference to a variable that receives the value
84  /// \param pValue void pointer to a variable that receives the value
85  /// \return true if the value was retrieved, false otherwise
86  /// \details GetVoidValue() retrieves the value of name if it exists.
87  /// \note GetVoidValue() is an internal function and should be implemented
88  /// by derived classes. Users should use one of the other functions instead.
89  /// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
90  /// GetRequiredParameter() and GetRequiredIntParameter()
91  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
92 
93  /// \brief Initialize or reinitialize this key
94  /// \param source NameValuePairs to assign
95  void AssignFrom(const NameValuePairs &source);
96 
97  // DL_GroupParameters
98  const Integer & GetSubgroupOrder() const {return m_q;}
99  Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
100  bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
101  bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
102 
103  /// \brief Determine if subgroup membership check is fast
104  /// \return true or false
105  bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
106 
107  /// \brief Encodes the element
108  /// \param reversible flag indicating the encoding format
109  /// \param element reference to the element to encode
110  /// \param encoded destination byte array for the encoded element
111  /// \details EncodeElement() must be implemented in a derived class.
112  /// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
113  /// \sa GetEncodedElementSize(), DecodeElement(), <A
114  /// HREF="http://github.com/weidai11/cryptopp/issues/40">Cygwin
115  /// i386 crash at -O3</A>
116  void EncodeElement(bool reversible, const Element &element, byte *encoded) const;
117 
118  /// \brief Retrieve the encoded element's size
119  /// \param reversible flag indicating the encoding format
120  /// \return encoded element's size, in bytes
121  /// \details The format of the encoded element varies by the underlying
122  /// type of the element and the reversible flag.
123  /// \sa EncodeElement(), DecodeElement()
124  unsigned int GetEncodedElementSize(bool reversible) const;
125 
126  /// \brief Decodes the element
127  /// \param encoded byte array with the encoded element
128  /// \param checkForGroupMembership flag indicating if the element should be validated
129  /// \return Element after decoding
130  /// \details DecodeElement() must be implemented in a derived class.
131  /// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
132  /// \sa GetEncodedElementSize(), EncodeElement()
133  Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
134 
135  /// \brief Converts an element to an Integer
136  /// \param element the element to convert to an Integer
137  /// \return Element after converting to an Integer
138  /// \details ConvertElementToInteger() must be implemented in a derived class.
139  Integer ConvertElementToInteger(const Element &element) const
140  {return element;}
141 
142  /// \brief Retrieve the maximum exponent for the group
143  /// \return the maximum exponent for the group
145 
146  /// \brief Retrieve the OID of the algorithm
147  /// \return OID of the algorithm
149 
150  /// \brief Retrieve the modulus for the group
151  /// \return the modulus for the group
152  virtual const Integer & GetModulus() const =0;
153 
154  /// \brief Set group parameters
155  /// \param p the prime modulus
156  /// \param g the group generator
157  virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
158 
159  /// \brief Set subgroup order
160  /// \param q the subgroup order
161  void SetSubgroupOrder(const Integer &q)
162  {m_q = q; ParametersChanged();}
163 
164  static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}
165 
166 protected:
167  Integer ComputeGroupOrder(const Integer &modulus) const
168  {return modulus-(GetFieldType() == 1 ? 1 : -1);}
169 
170  // GF(p) = 1, GF(p^2) = 2
171  virtual int GetFieldType() const =0;
172  virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
173 
174 private:
175  Integer m_q;
176 };
177 
178 /// \brief Integer-based GroupParameters default implementation
179 /// \tparam GROUP_PRECOMP group parameters precomputation specialization
180 /// \tparam BASE_PRECOMP base class precomputation specialization
181 template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element> >
182 class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
183 {
185 
186 public:
187  typedef typename GROUP_PRECOMP::Element Element;
188 
190 
191  // GeneratibleCryptoMaterial interface
192  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
193  {return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
194 
195  void AssignFrom(const NameValuePairs &source)
196  {AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
197 
198  // DL_GroupParameters
199  const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
201 
202  // IntegerGroupParameters
203  /// \brief Retrieve the modulus for the group
204  /// \return the modulus for the group
205  const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();}
206 
207  /// \brief Retrieves a reference to the group generator
208  /// \return const reference to the group generator
209  const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}
210 
211  void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together
212  {this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}
213 
214  // non-inherited
216  {return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();}
218  {return !operator==(rhs);}
219 };
220 
222 
223 /// \brief GF(p) group parameters
224 class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
225 {
226 public:
227  virtual ~DL_GroupParameters_GFP() {}
228 
229  /// \brief Determines if an element is an identity
230  /// \param element element to check
231  /// \return true if the element is an identity, false otherwise
232  /// \details The identity element or or neutral element is a special element
233  /// in a group that leaves other elements unchanged when combined with it.
234  /// \details IsIdentity() must be implemented in a derived class.
235  bool IsIdentity(const Integer &element) const {return element == Integer::One();}
236 
237  /// \brief Exponentiates a base to multiple exponents
238  /// \param results an array of Elements
239  /// \param base the base to raise to the exponents
240  /// \param exponents an array of exponents
241  /// \param exponentsCount the number of exponents in the array
242  /// \details SimultaneousExponentiate() raises the base to each exponent in
243  /// the exponents array and stores the result at the respective position in
244  /// the results array.
245  /// \details SimultaneousExponentiate() must be implemented in a derived class.
246  /// \pre <tt>COUNTOF(results) == exponentsCount</tt>
247  /// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
248  void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
249 
250  /// \brief Get a named value
251  /// \param name the name of the object or value to retrieve
252  /// \param valueType reference to a variable that receives the value
253  /// \param pValue void pointer to a variable that receives the value
254  /// \return true if the value was retrieved, false otherwise
255  /// \details GetVoidValue() retrieves the value of name if it exists.
256  /// \note GetVoidValue() is an internal function and should be implemented
257  /// by derived classes. Users should use one of the other functions instead.
258  /// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
259  /// GetRequiredParameter() and GetRequiredIntParameter()
260  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
261  {
262  return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
263  }
264 
265  // used by MQV
266  Element MultiplyElements(const Element &a, const Element &b) const;
267  Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
268 
269 protected:
270  int GetFieldType() const {return 1;}
271 };
272 
273 /// \brief GF(p) group parameters that default to safe primes
275 {
276 public:
278 
280 
281 protected:
282  unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
283 };
284 
285 /// ElGamal encryption for safe interop
286 /// \sa <A HREF="https://eprint.iacr.org/2021/923.pdf">On the
287 /// (in)security of ElGamal in OpenPGP</A>,
288 /// <A HREF="https://github.com/weidai11/cryptopp/issues/1059">Issue 1059</A>,
289 /// <A HREF="https://nvd.nist.gov/vuln/detail/CVE-2021-40530">CVE-2021-40530</A>
290 /// \since Crypto++ 8.6
292 {
293 public:
295 
296  virtual ~DL_GroupParameters_ElGamal() {}
297 
299  {
300  return GetSubgroupOrder()-1;
301  }
302 };
303 
304 /// \brief GDSA algorithm
305 /// \tparam T FieldElement type or class
306 /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
307 template <class T>
309 {
310 public:
311  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}
312 
313  virtual ~DL_Algorithm_GDSA() {}
314 
315  void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
316  {
317  const Integer &q = params.GetSubgroupOrder();
318  r %= q;
319  Integer kInv = k.InverseMod(q);
320  s = (kInv * (x*r + e)) % q;
321  CRYPTOPP_ASSERT(!!r && !!s);
322  }
323 
324  bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
325  {
326  const Integer &q = params.GetSubgroupOrder();
327  if (r>=q || r<1 || s>=q || s<1)
328  return false;
329 
330  Integer w = s.InverseMod(q);
331  Integer u1 = (e * w) % q;
332  Integer u2 = (r * w) % q;
333  // verify r == (g^u1 * y^u2 mod p) mod q
334  return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
335  }
336 };
337 
338 /// \brief DSA signature algorithm based on RFC 6979
339 /// \tparam T FieldElement type or class
340 /// \tparam H HashTransformation derived class
341 /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
342 /// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
343 /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
344 /// \since Crypto++ 6.0
345 template <class T, class H>
347 {
348 public:
349  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-RFC6979";}
350 
351  virtual ~DL_Algorithm_DSA_RFC6979() {}
352 
353  bool IsProbabilistic() const
354  {return false;}
355  bool IsDeterministic() const
356  {return true;}
357 
358  // Deterministic K
359  Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
360  {
361  static const byte zero = 0, one = 1;
362  const size_t qlen = q.BitCount();
363  const size_t rlen = BitsToBytes(qlen);
364 
365  // Step (a) - formatted E(m)
367  e.Encode(BH, BH.size());
368  BH = bits2octets(BH, q);
369 
370  // Step (a) - private key to byte array
371  SecByteBlock BX(STDMAX(rlen, x.MinEncodedSize()));
372  x.Encode(BX, BX.size());
373 
374  // Step (b)
375  SecByteBlock V(H::DIGESTSIZE);
376  std::fill(V.begin(), V.begin()+H::DIGESTSIZE, one);
377 
378  // Step (c)
379  SecByteBlock K(H::DIGESTSIZE);
380  std::fill(K.begin(), K.begin()+H::DIGESTSIZE, zero);
381 
382  // Step (d)
383  m_hmac.SetKey(K, K.size());
384  m_hmac.Update(V, V.size());
385  m_hmac.Update(&zero, 1);
386  m_hmac.Update(BX, BX.size());
387  m_hmac.Update(BH, BH.size());
388  m_hmac.TruncatedFinal(K, K.size());
389 
390  // Step (e)
391  m_hmac.SetKey(K, K.size());
392  m_hmac.Update(V, V.size());
393  m_hmac.TruncatedFinal(V, V.size());
394 
395  // Step (f)
396  m_hmac.SetKey(K, K.size());
397  m_hmac.Update(V, V.size());
398  m_hmac.Update(&one, 1);
399  m_hmac.Update(BX, BX.size());
400  m_hmac.Update(BH, BH.size());
401  m_hmac.TruncatedFinal(K, K.size());
402 
403  // Step (g)
404  m_hmac.SetKey(K, K.size());
405  m_hmac.Update(V, V.size());
406  m_hmac.TruncatedFinal(V, V.size());
407 
408  Integer k;
409  SecByteBlock temp(rlen);
410  for (;;)
411  {
412  // We want qlen bits, but we support only hash functions with an output length
413  // multiple of 8; hence, we will gather rlen bits, i.e., rolen octets.
414  size_t toff = 0;
415  while (toff < rlen)
416  {
417  m_hmac.Update(V, V.size());
418  m_hmac.TruncatedFinal(V, V.size());
419 
420  size_t cc = STDMIN(V.size(), temp.size() - toff);
421  memcpy_s(temp+toff, temp.size() - toff, V, cc);
422  toff += cc;
423  }
424 
425  k = bits2int(temp, qlen);
426  if (k > 0 && k < q)
427  break;
428 
429  // k is not in the proper range; update K and V, and loop.
430  m_hmac.Update(V, V.size());
431  m_hmac.Update(&zero, 1);
432  m_hmac.TruncatedFinal(K, K.size());
433 
434  m_hmac.SetKey(K, K.size());
435  m_hmac.Update(V, V.size());
436  m_hmac.TruncatedFinal(V, V.size());
437  }
438 
439  return k;
440  }
441 
442 protected:
443 
444  Integer bits2int(const SecByteBlock& bits, size_t qlen) const
445  {
446  Integer ret(bits, bits.size());
447  size_t blen = bits.size()*8;
448 
449  if (blen > qlen)
450  ret >>= blen - qlen;
451 
452  return ret;
453  }
454 
455  // RFC 6979 support function. Takes an integer and converts it into bytes that
456  // are the same length as an elliptic curve's order.
457  SecByteBlock int2octets(const Integer& val, size_t rlen) const
458  {
459  SecByteBlock block(val.MinEncodedSize());
460  val.Encode(block, val.MinEncodedSize());
461 
462  if (block.size() == rlen)
463  return block;
464 
465  // The least significant bytes are the ones we need to preserve.
466  SecByteBlock t(rlen);
467  if (block.size() > rlen)
468  {
469  size_t offset = block.size() - rlen;
470  std::memcpy(t, block + offset, rlen);
471  }
472  else // block.size() < rlen
473  {
474  size_t offset = rlen - block.size();
475  std::memset(t, '\x00', offset);
476  std::memcpy(t + offset, block, rlen - offset);
477  }
478 
479  return t;
480  }
481 
482  // Turn a stream of bits into a set of bytes with the same length as an elliptic
483  // curve's order.
484  SecByteBlock bits2octets(const SecByteBlock& in, const Integer& q) const
485  {
486  Integer b2 = bits2int(in, q.BitCount());
487  Integer b1 = b2 - q;
488  return int2octets(b1.IsNegative() ? b2 : b1, q.ByteCount());
489  }
490 
491 private:
492  mutable H m_hash;
493  mutable HMAC<H> m_hmac;
494 };
495 
496 /// \brief German Digital Signature Algorithm
497 /// \tparam T FieldElement type or class
498 /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
499 /// \details The Digital Signature Scheme ECGDSA does not define the algorithm over integers. Rather, the
500 /// signature algorithm is only defined over elliptic curves. However, the library design is such that the
501 /// generic algorithm reside in <tt>gfpcrypt.h</tt>.
502 /// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">
503 /// The Digital Signature Scheme ECGDSA (October 24, 2006)</A>
504 template <class T>
506 {
507 public:
508  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "GDSA-ISO15946";}
509 
510  virtual ~DL_Algorithm_GDSA_ISO15946() {}
511 
512  void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
513  {
514  const Integer &q = params.GetSubgroupOrder();
515  // r = x(k * G) mod q
516  r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q;
517  // s = (k * r - h(m)) * d_A mod q
518  s = (k * r - e) * x % q;
519  CRYPTOPP_ASSERT(!!r && !!s);
520  }
521 
522  bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
523  {
524  const Integer &q = params.GetSubgroupOrder();
525  if (r>=q || r<1 || s>=q || s<1)
526  return false;
527 
528  const Integer& rInv = r.InverseMod(q);
529  const Integer u1 = (rInv * e) % q;
530  const Integer u2 = (rInv * s) % q;
531  // verify x(G^u1 + P_A^u2) mod q
532  return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
533  }
534 };
535 
542 
543 /// \brief NR algorithm
544 /// \tparam T FieldElement type or class
545 /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
546 template <class T>
548 {
549 public:
550  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "NR";}
551 
552  virtual ~DL_Algorithm_NR() {}
553 
554  void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
555  {
556  const Integer &q = params.GetSubgroupOrder();
557  r = (r + e) % q;
558  s = (k - x*r) % q;
559  CRYPTOPP_ASSERT(!!r);
560  }
561 
562  bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
563  {
564  const Integer &q = params.GetSubgroupOrder();
565  if (r>=q || r<1 || s>=q)
566  return false;
567 
568  // check r == (m_g^s * m_y^r + m) mod m_q
569  return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
570  }
571 };
572 
573 /// \brief Discrete Log (DL) public key in GF(p) groups
574 /// \tparam GP GroupParameters derived class
575 /// \details DSA public key format is defined in 7.3.3 of RFC 2459. The private key format is defined in 12.9 of PKCS #11 v2.10.
576 template <class GP>
578 {
579 public:
580  virtual ~DL_PublicKey_GFP() {}
581 
582  /// \brief Initialize a public key over GF(p)
583  /// \param params the group parameters
584  /// \param y the public element
585  void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &y)
586  {this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);}
587 
588  /// \brief Initialize a public key over GF(p)
589  /// \param p the modulus
590  /// \param g the generator
591  /// \param y the public element
592  void Initialize(const Integer &p, const Integer &g, const Integer &y)
593  {this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);}
594 
595  /// \brief Initialize a public key over GF(p)
596  /// \param p the modulus
597  /// \param q the subgroup order
598  /// \param g the generator
599  /// \param y the public element
600  void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
601  {this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}
602 
603  // X509PublicKey
605  {this->SetPublicElement(Integer(bt));}
607  {this->GetPublicElement().DEREncode(bt);}
608 };
609 
610 /// \brief Discrete Log (DL) private key in GF(p) groups
611 /// \tparam GP GroupParameters derived class
612 template <class GP>
614 {
615 public:
616  virtual ~DL_PrivateKey_GFP();
617 
618  /// \brief Create a private key
619  /// \param rng a RandomNumberGenerator derived class
620  /// \param modulusBits the size of the modulus, in bits
621  /// \details This function overload of Initialize() creates a new private key because it
622  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
623  /// then use one of the other Initialize() overloads.
624  void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
625  {this->GenerateRandomWithKeySize(rng, modulusBits);}
626 
627  /// \brief Create a private key
628  /// \param rng a RandomNumberGenerator derived class
629  /// \param p the modulus
630  /// \param g the generator
631  /// \details This function overload of Initialize() creates a new private key because it
632  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
633  /// then use one of the other Initialize() overloads.
634  void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
635  {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
636 
637  /// \brief Create a private key
638  /// \param rng a RandomNumberGenerator derived class
639  /// \param p the modulus
640  /// \param q the subgroup order
641  /// \param g the generator
642  /// \details This function overload of Initialize() creates a new private key because it
643  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
644  /// then use one of the other Initialize() overloads.
645  void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
646  {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
647 
648  /// \brief Initialize a private key over GF(p)
649  /// \param params the group parameters
650  /// \param x the private exponent
651  void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &x)
652  {this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);}
653 
654  /// \brief Initialize a private key over GF(p)
655  /// \param p the modulus
656  /// \param g the generator
657  /// \param x the private exponent
658  void Initialize(const Integer &p, const Integer &g, const Integer &x)
659  {this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);}
660 
661  /// \brief Initialize a private key over GF(p)
662  /// \param p the modulus
663  /// \param q the subgroup order
664  /// \param g the generator
665  /// \param x the private exponent
666  void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
667  {this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);}
668 };
669 
670 // Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
671 template <class GP>
673 
674 /// \brief Discrete Log (DL) signing/verification keys in GF(p) groups
676 {
680 };
681 
682 /// \brief Discrete Log (DL) encryption/decryption keys in GF(p) groups
684 {
688 };
689 
690 /// ElGamal encryption keys for safe interop
691 /// \sa <A HREF="https://eprint.iacr.org/2021/923.pdf">On the
692 /// (in)security of ElGamal in OpenPGP</A>,
693 /// <A HREF="https://github.com/weidai11/cryptopp/issues/1059">Issue 1059</A>,
694 /// <A HREF="https://nvd.nist.gov/vuln/detail/CVE-2021-40530">CVE-2021-40530</A>
695 /// \since Crypto++ 8.6
697 {
701 };
702 
703 /// \brief DSA signature scheme
704 /// \tparam H HashTransformation derived class
705 /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
706 /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
707 template <class H>
708 struct GDSA : public DL_SS<
709  DL_SignatureKeys_GFP,
710  DL_Algorithm_GDSA<Integer>,
711  DL_SignatureMessageEncodingMethod_DSA,
712  H>
713 {
714 };
715 
716 /// \brief NR signature scheme
717 /// \tparam H HashTransformation derived class
718 /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
719 template <class H>
720 struct NR : public DL_SS<
721  DL_SignatureKeys_GFP,
722  DL_Algorithm_NR<Integer>,
723  DL_SignatureMessageEncodingMethod_NR,
724  H>
725 {
726 };
727 
728 /// \brief DSA group parameters
729 /// \details These are GF(p) group parameters that are allowed by the DSA standard
730 /// \sa DL_Keys_DSA
731 /// \since Crypto++ 1.0
733 {
734 public:
735  virtual ~DL_GroupParameters_DSA() {}
736 
737  /// \brief Check the group for errors
738  /// \param rng RandomNumberGenerator for objects which use randomized testing
739  /// \param level level of thoroughness
740  /// \return true if the tests succeed, false otherwise
741  /// \details ValidateGroup() also checks that the lengths of p and q are allowed
742  /// by the DSA standard.
743  /// \details There are four levels of thoroughness:
744  /// <ul>
745  /// <li>0 - using this object won't cause a crash or exception
746  /// <li>1 - this object will probably function, and encrypt, sign, other operations correctly
747  /// <li>2 - ensure this object will function correctly, and perform reasonable security checks
748  /// <li>3 - perform reasonable security checks, and do checks that may take a long time
749  /// </ul>
750  /// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
751  /// Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
752  bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
753 
754  /// \brief Generate a random key or crypto parameters
755  /// \param rng a RandomNumberGenerator to produce keying material
756  /// \param alg additional initialization parameters
757  /// \details NameValuePairs can be ModulusSize alone; or Modulus, SubgroupOrder, and
758  /// SubgroupGenerator. ModulusSize must be between <tt>DSA::MIN_PRIME_LENGTH</tt> and
759  /// <tt>DSA::MAX_PRIME_LENGTH</tt>, and divisible by <tt>DSA::PRIME_LENGTH_MULTIPLE</tt>.
760  /// \details An example of changing the modulus size using NameValuePairs is shown below.
761  /// <pre>
762  /// AlgorithmParameters params = MakeParameters
763  /// (Name::ModulusSize(), 2048);
764  ///
765  /// DL_GroupParameters_DSA groupParams;
766  /// groupParams.GenerateRandom(prng, params);
767  /// </pre>
768  /// \throw KeyingErr if a key can't be generated or algorithm parameters are invalid.
770 
771  /// \brief Check the prime length for errors
772  /// \param pbits number of bits in the prime number
773  /// \return true if the tests succeed, false otherwise
774  static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
775  {return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
776 
777  /// \brief DSA prime length
778  enum {
779  /// \brief Minimum prime length
780  MIN_PRIME_LENGTH = 1024,
781  /// \brief Maximum prime length
782  MAX_PRIME_LENGTH = 3072,
783  /// \brief Prime length multiple
784  PRIME_LENGTH_MULTIPLE = 1024
785  };
786 };
787 
788 template <class H>
789 class DSA2;
790 
791 /// \brief DSA keys
792 /// \sa DL_GroupParameters_DSA
793 /// \since Crypto++ 1.0
795 {
798 };
799 
800 /// \brief DSA signature scheme
801 /// \tparam H HashTransformation derived class
802 /// \details The class is named DSA2 instead of DSA for backwards compatibility because
803 /// DSA was a non-template class.
804 /// \details DSA default method GenerateRandom uses a 2048-bit modulus and a 224-bit subgoup by default.
805 /// The modulus can be changed using the following code:
806 /// <pre>
807 /// DSA::PrivateKey privateKey;
808 /// privateKey.GenerateRandomWithKeySize(prng, 2048);
809 /// </pre>
810 /// \details The subgroup order can be changed using the following code:
811 /// <pre>
812 /// AlgorithmParameters params = MakeParameters
813 /// (Name::ModulusSize(), 2048)
814 /// (Name::SubgroupOrderSize(), 256);
815 ///
816 /// DSA::PrivateKey privateKey;
817 /// privateKey.GenerateRandom(prng, params);
818 /// </pre>
819 /// \sa <a href="http://en.wikipedia.org/wiki/Digital_Signature_Algorithm">DSA</a>, as specified in FIPS 186-3,
820 /// <a href="https://www.cryptopp.com/wiki/Digital_Signature_Algorithm">Digital Signature Algorithm</a> on the wiki, and
821 /// <a href="https://www.cryptopp.com/wiki/NameValuePairs">NameValuePairs</a> on the wiki.
822 /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2, Crypto++ 6.1 for 2048-bit modulus.
823 template <class H>
824 class DSA2 : public DL_SS<
825  DL_Keys_DSA,
826  DL_Algorithm_GDSA<Integer>,
827  DL_SignatureMessageEncodingMethod_DSA,
828  H,
829  DSA2<H> >
830 {
831 public:
832  static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();}
833 };
834 
835 /// \brief DSA deterministic signature scheme
836 /// \tparam H HashTransformation derived class
837 /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
838 /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
839 template <class H>
840 struct DSA_RFC6979 : public DL_SS<
841  DL_SignatureKeys_GFP,
842  DL_Algorithm_DSA_RFC6979<Integer, H>,
843  DL_SignatureMessageEncodingMethod_DSA,
844  H,
845  DSA_RFC6979<H> >
846 {
847  static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("DSA-RFC6979/") + H::StaticAlgorithmName();}
848 };
849 
850 /// DSA with SHA-1, typedef'd for backwards compatibility
851 typedef DSA2<SHA1> DSA;
852 
856 
857 /// \brief P1363 based XOR Encryption Method
858 /// \tparam MAC MessageAuthenticationCode derived class used for MAC computation
859 /// \tparam DHAES_MODE flag indicating DHAES mode
860 /// \tparam LABEL_OCTETS flag indicating the label is octet count
861 /// \details DL_EncryptionAlgorithm_Xor is based on an early P1363 draft, which itself appears to be based on an
862 /// early Certicom SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used it in its Integrated
863 /// Ecryption Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
864 /// \details If you need this method for Crypto++ 4.2 compatibility, then use the ECIES template class with
865 /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
866 /// \details If you need this method for Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES template class with
867 /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
868 /// \details Bouncy Castle 1.54 and Botan 1.11 compatibility are the default template parameters.
869 /// \since Crypto++ 4.0
870 template <class MAC, bool DHAES_MODE, bool LABEL_OCTETS=false>
872 {
873 public:
874  virtual ~DL_EncryptionAlgorithm_Xor() {}
875 
876  bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;}
877  size_t GetSymmetricKeyLength(size_t plaintextLength) const
878  {return plaintextLength + static_cast<size_t>(MAC::DEFAULT_KEYLENGTH);}
879  size_t GetSymmetricCiphertextLength(size_t plaintextLength) const
880  {return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
881  size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const
882  {return SaturatingSubtract(ciphertextLength, static_cast<size_t>(MAC::DIGESTSIZE));}
883  void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs &parameters) const
884  {
885  CRYPTOPP_UNUSED(rng);
886  const byte *cipherKey = NULLPTR, *macKey = NULLPTR;
887  if (DHAES_MODE)
888  {
889  macKey = key;
890  cipherKey = key + MAC::DEFAULT_KEYLENGTH;
891  }
892  else
893  {
894  cipherKey = key;
895  macKey = key + plaintextLength;
896  }
897 
898  ConstByteArrayParameter encodingParameters;
899  parameters.GetValue(Name::EncodingParameters(), encodingParameters);
900 
901  if (plaintextLength) // Coverity finding
902  xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
903 
904  MAC mac(macKey);
905  mac.Update(ciphertext, plaintextLength);
906  mac.Update(encodingParameters.begin(), encodingParameters.size());
907  if (DHAES_MODE)
908  {
909  byte L[8];
910  PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
911  mac.Update(L, 8);
912  }
913  mac.Final(ciphertext + plaintextLength);
914  }
915  DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs &parameters) const
916  {
917  size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
918  const byte *cipherKey, *macKey;
919  if (DHAES_MODE)
920  {
921  macKey = key;
922  cipherKey = key + MAC::DEFAULT_KEYLENGTH;
923  }
924  else
925  {
926  cipherKey = key;
927  macKey = key + plaintextLength;
928  }
929 
930  ConstByteArrayParameter encodingParameters;
931  parameters.GetValue(Name::EncodingParameters(), encodingParameters);
932 
933  MAC mac(macKey);
934  mac.Update(ciphertext, plaintextLength);
935  mac.Update(encodingParameters.begin(), encodingParameters.size());
936  if (DHAES_MODE)
937  {
938  byte L[8];
939  PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
940  mac.Update(L, 8);
941  }
942  if (!mac.Verify(ciphertext + plaintextLength))
943  return DecodingResult();
944 
945  if (plaintextLength) // Coverity finding
946  xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
947 
948  return DecodingResult(plaintextLength);
949  }
950 };
951 
952 /// \brief P1363 based Key Derivation Method
953 /// \tparam T FieldElement type or class
954 /// \tparam DHAES_MODE flag indicating DHAES mode
955 /// \tparam KDF key derivation function
956 /// \details FieldElement <tt>T</tt> can be Integer, ECP or EC2N.
957 template <class T, bool DHAES_MODE, class KDF>
959 {
960 public:
961  virtual ~DL_KeyDerivationAlgorithm_P1363() {}
962 
963  bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;}
964  void Derive(const DL_GroupParameters<T> &params, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs &parameters) const
965  {
966  SecByteBlock agreedSecret;
967  if (DHAES_MODE)
968  {
969  agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
970  params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
971  params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
972  }
973  else
974  {
975  agreedSecret.New(params.GetEncodedElementSize(false));
976  params.EncodeElement(false, agreedElement, agreedSecret);
977  }
978 
979  ConstByteArrayParameter derivationParameters;
980  parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters);
981  KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size());
982  }
983 };
984 
985 /// \brief Discrete Log Integrated Encryption Scheme
986 /// \tparam COFACTOR_OPTION cofactor multiplication option
987 /// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
988 /// \tparam DHAES_MODE flag indicating if the MAC includes addition context parameters such as the label
989 /// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
990 /// \details DLIES is an Integer based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation Method (KEM)
991 /// with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
992 /// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
993 /// You should prefer an Integrated Encryption Scheme over homegrown schemes.
994 /// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
995 /// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
996 /// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
997 /// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the DLIES template class with
998 /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
999 /// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the DLIES
1000 /// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
1001 /// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
1002 /// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
1003 /// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
1004 /// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
1005 /// \details Below is an example of constructing a Crypto++ 4.2 compatible DLIES encryptor and decryptor.
1006 /// <pre>
1007 /// AutoSeededRandomPool prng;
1008 /// DL_PrivateKey_GFP<DL_GroupParameters_GFP> key;
1009 /// key.Initialize(prng, 2048);
1010 ///
1011 /// DLIES<SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
1012 /// DLIES<SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
1013 /// </pre>
1014 /// \sa ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">Discrete Log Integrated Encryption Scheme (DLIES)</a>,
1015 /// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
1016 /// Curve Integrated Encryption Schemes</A>
1017 /// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
1018 template <class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS=false>
1019 struct DLIES
1020  : public DL_ES<
1021  DL_CryptoKeys_GFP,
1022  DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
1023  DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
1024  DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
1025  DLIES<> >
1026 {
1027  static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized
1028 };
1029 
1030 NAMESPACE_END
1031 
1032 #if CRYPTOPP_MSC_VERSION
1033 # pragma warning(pop)
1034 #endif
1035 
1036 #endif
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Definition: algparam.h:508
Classes and functions for working with ANS.1 objects.
bool operator==(const OID &lhs, const OID &rhs)
Compare two OIDs for equality.
bool operator!=(const OID &lhs, const OID &rhs)
Compare two OIDs for inequality.
Encode and decode ASN.1 objects with additional information.
Definition: asn.h:684
Interface for buffered transformations.
Definition: cryptlib.h:1657
Used to pass byte array input as part of a NameValuePairs object.
Definition: algparam.h:25
size_t size() const
Length of the memory block.
Definition: algparam.h:88
const byte * begin() const
Pointer to the first byte in the memory block.
Definition: algparam.h:84
DSA signature algorithm based on RFC 6979.
Definition: gfpcrypt.h:347
Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
Generate k.
Definition: gfpcrypt.h:359
bool IsDeterministic() const
Signature scheme flag.
Definition: gfpcrypt.h:355
German Digital Signature Algorithm.
Definition: gfpcrypt.h:506
void Sign(const DL_GroupParameters< T > &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
Definition: gfpcrypt.h:512
bool Verify(const DL_GroupParameters< T > &params, const DL_PublicKey< T > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
Definition: gfpcrypt.h:522
GDSA algorithm.
Definition: gfpcrypt.h:309
bool Verify(const DL_GroupParameters< T > &params, const DL_PublicKey< T > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
Definition: gfpcrypt.h:324
void Sign(const DL_GroupParameters< T > &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
Definition: gfpcrypt.h:315
NR algorithm.
Definition: gfpcrypt.h:548
bool Verify(const DL_GroupParameters< T > &params, const DL_PublicKey< T > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
Definition: gfpcrypt.h:562
void Sign(const DL_GroupParameters< T > &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
Definition: gfpcrypt.h:554
Discrete Log (DL) encryption scheme.
Definition: pubkey.h:2362
Interface for Elgamal-like signature algorithms.
Definition: pubkey.h:1407
P1363 based XOR Encryption Method.
Definition: gfpcrypt.h:872
DSA group parameters.
Definition: gfpcrypt.h:733
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
Check the group for errors.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
Generate a random key or crypto parameters.
static bool IsValidPrimeLength(unsigned int pbits)
Check the prime length for errors.
Definition: gfpcrypt.h:774
ElGamal encryption for safe interop.
Definition: gfpcrypt.h:292
Integer GetMaxExponent() const
Retrieves the maximum exponent for the group.
Definition: gfpcrypt.h:298
GF(p) group parameters that default to safe primes.
Definition: gfpcrypt.h:275
GF(p) group parameters.
Definition: gfpcrypt.h:225
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
Exponentiates a base to multiple exponents.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: gfpcrypt.h:260
bool IsIdentity(const Integer &element) const
Determines if an element is an identity.
Definition: gfpcrypt.h:235
Integer-based GroupParameters specialization.
Definition: gfpcrypt.h:35
void AssignFrom(const NameValuePairs &source)
Initialize or reinitialize this key.
void Initialize(const Integer &p, const Integer &g)
Initialize a group parameters over integers.
Definition: gfpcrypt.h:58
Integer GetGroupOrder() const
Retrieves the order of the group.
Definition: gfpcrypt.h:99
virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g)=0
Set group parameters.
void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
Create a group parameters over integers.
Definition: gfpcrypt.h:52
OID GetAlgorithmID() const
Retrieve the OID of the algorithm.
void DEREncode(BufferedTransformation &bt) const
Encode this object into a BufferedTransformation.
virtual const Integer & GetModulus() const =0
Retrieve the modulus for the group.
Integer GetMaxExponent() const
Retrieve the maximum exponent for the group.
void SetSubgroupOrder(const Integer &q)
Set subgroup order.
Definition: gfpcrypt.h:161
Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const
Decodes the element.
Integer ConvertElementToInteger(const Element &element) const
Converts an element to an Integer.
Definition: gfpcrypt.h:139
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
Generate a random key.
void BERDecode(BufferedTransformation &bt)
Decode this object from a BufferedTransformation.
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
Check the group for errors.
void Initialize(const DL_GroupParameters_IntegerBased &params)
Initialize a group parameters over integers.
Definition: gfpcrypt.h:43
bool FastSubgroupCheckAvailable() const
Determine if subgroup membership check is fast.
Definition: gfpcrypt.h:105
unsigned int GetEncodedElementSize(bool reversible) const
Retrieve the encoded element's size.
void Initialize(const Integer &p, const Integer &q, const Integer &g)
Initialize a group parameters over integers.
Definition: gfpcrypt.h:65
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
const Integer & GetSubgroupOrder() const
Retrieves the subgroup order.
Definition: gfpcrypt.h:98
void EncodeElement(bool reversible, const Element &element, byte *encoded) const
Encodes the element.
Integer-based GroupParameters default implementation.
Definition: gfpcrypt.h:183
void AssignFrom(const NameValuePairs &source)
Initialize or reinitialize this key.
Definition: gfpcrypt.h:195
const Integer & GetGenerator() const
Retrieves a reference to the group generator.
Definition: gfpcrypt.h:209
const Integer & GetModulus() const
Retrieve the modulus for the group.
Definition: gfpcrypt.h:205
const DL_FixedBasePrecomputation< Element > & GetBasePrecomputation() const
Retrieves the group precomputation.
Definition: gfpcrypt.h:199
void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g)
Set group parameters.
Definition: gfpcrypt.h:211
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: gfpcrypt.h:192
DL_FixedBasePrecomputation< Element > & AccessBasePrecomputation()
Retrieves the group precomputation.
Definition: gfpcrypt.h:200
Interface for Discrete Log (DL) group parameters.
Definition: pubkey.h:782
virtual void EncodeElement(bool reversible, const Element &element, byte *encoded) const =0
Encodes the element.
virtual const Element & GetSubgroupGenerator() const
Retrieves the subgroup generator.
Definition: pubkey.h:859
virtual unsigned int GetEncodedElementSize(bool reversible) const =0
Retrieves the encoded element's size.
virtual Element ExponentiateBase(const Integer &exponent) const
Exponentiates the base.
Definition: pubkey.h:869
virtual const Integer & GetSubgroupOrder() const=0
Retrieves the subgroup order.
virtual Integer ConvertElementToInteger(const Element &element) const =0
Converts an element to an Integer.
Base implementation of Discrete Log (DL) group parameters.
Definition: pubkey.h:1014
const DL_GroupPrecomputation< Element > & GetGroupPrecomputation() const
Retrieves the group precomputation.
Definition: pubkey.h:1024
P1363 based Key Derivation Method.
Definition: gfpcrypt.h:959
Interface for key derivation algorithms used in DL cryptosystems.
Definition: pubkey.h:1493
Discrete Log (DL) private key in GF(p) groups.
Definition: gfpcrypt.h:614
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
Create a private key.
Definition: gfpcrypt.h:645
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
Create a private key.
Definition: gfpcrypt.h:634
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
Create a private key.
Definition: gfpcrypt.h:624
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
Initialize a private key over GF(p)
Definition: gfpcrypt.h:666
void Initialize(const Integer &p, const Integer &g, const Integer &x)
Initialize a private key over GF(p)
Definition: gfpcrypt.h:658
void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &x)
Initialize a private key over GF(p)
Definition: gfpcrypt.h:651
Discrete Log (DL) private key base implementation.
Definition: pubkey.h:1239
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params)
Generate a random key or crypto parameters.
Definition: pubkey.h:1276
void SetPrivateExponent(const Integer &x)
Sets the private exponent.
Definition: pubkey.h:1301
Discrete Log (DL) public key in GF(p) groups.
Definition: gfpcrypt.h:578
void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &y)
Initialize a public key over GF(p)
Definition: gfpcrypt.h:585
void Initialize(const Integer &p, const Integer &g, const Integer &y)
Initialize a public key over GF(p)
Definition: gfpcrypt.h:592
void DEREncodePublicKey(BufferedTransformation &bt) const
Encode subjectPublicKey part of subjectPublicKeyInfo.
Definition: gfpcrypt.h:606
void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
Decode subjectPublicKey part of subjectPublicKeyInfo.
Definition: gfpcrypt.h:604
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
Initialize a public key over GF(p)
Definition: gfpcrypt.h:600
Interface for Discrete Log (DL) public keys.
Definition: pubkey.h:1059
virtual void SetPublicElement(const Element &y)
Sets the public element.
Definition: pubkey.h:1093
virtual const Element & GetPublicElement() const
Retrieves the public element.
Definition: pubkey.h:1089
virtual Element CascadeExponentiateBaseAndPublicElement(const Integer &baseExp, const Integer &publicExp) const
Exponentiates an element.
Definition: pubkey.h:1110
Discrete Log (DL) public key base implementation.
Definition: pubkey.h:1336
Discrete Log (DL) signature scheme.
Definition: pubkey.h:2342
Interface for symmetric encryption algorithms used in DL cryptosystems.
Definition: pubkey.h:1505
DSA signature scheme.
Definition: gfpcrypt.h:830
Interface for deterministic signers.
Definition: pubkey.h:1460
void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
Generate a random key or crypto parameters.
Multiple precision integer with arithmetic operations.
Definition: integer.h:50
size_t MinEncodedSize(Signedness sign=UNSIGNED) const
Minimum number of bytes to encode this integer.
static const Integer & One()
Integer representing 1.
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
bool IsNegative() const
Determines if the Integer is negative.
Definition: integer.h:341
unsigned int ByteCount() const
Determines the number of bytes required to represent the Integer.
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const
Encode in big-endian format.
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
Interface for retrieving values given their names.
Definition: cryptlib.h:327
bool GetValue(const char *name, T &value) const
Get a named value.
Definition: cryptlib.h:384
Object Identifier.
Definition: asn.h:265
Interface for random number generators.
Definition: cryptlib.h:1440
iterator begin()
Provides an iterator pointing to the first element in the memory block.
Definition: secblock.h:836
void New(size_type newSize)
Change size without preserving contents.
Definition: secblock.h:1126
size_type size() const
Provides the count of elements in the SecBlock.
Definition: secblock.h:867
SecBlock<byte> typedef.
Definition: secblock.h:1226
Library configuration file.
#define CRYPTOPP_API
Win32 calling convention.
Definition: config_dll.h:119
#define CRYPTOPP_DLL_TEMPLATE_CLASS
Instantiate templates in a dynamic library.
Definition: config_dll.h:72
unsigned long long word64
64-bit unsigned datatype
Definition: config_int.h:101
Abstract base classes that provide a uniform interface to this library.
@ BIG_ENDIAN_ORDER
byte order is big-endian
Definition: cryptlib.h:152
DSA2< SHA1 > DSA
DSA with SHA-1, typedef'd for backwards compatibility.
Definition: gfpcrypt.h:851
Classes for HMAC message authentication codes.
Multiple precision integer with arithmetic operations.
Utility functions for the Crypto++ library.
T1 SaturatingSubtract(const T1 &a, const T2 &b)
Performs a saturating subtract clamped at 0.
Definition: misc.h:1302
void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
Bounds checking replacement for memcpy()
Definition: misc.h:527
size_t BitsToBytes(size_t bitCount)
Returns the number of 8-bit bytes or octets required for the specified number of bits.
Definition: misc.h:1143
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
Definition: misc.h:657
void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock=NULL)
Access a block of memory.
Definition: misc.h:2948
const T & STDMAX(const T &a, const T &b)
Replacement function for std::max.
Definition: misc.h:668
CRYPTOPP_DLL void xorbuf(byte *buf, const byte *mask, size_t count)
Performs an XOR of a buffer with a mask.
Crypto++ library namespace.
const char * KeyDerivationParameters()
ConstByteArrayParameter.
Definition: argnames.h:67
const char * EncodingParameters()
ConstByteArrayParameter.
Definition: argnames.h:66
This file contains helper classes/functions for implementing public key algorithms.
Classes for SHA-1 and SHA-2 family of message digests.
Classes for automatic resource management.
ElGamal encryption keys for safe interop.
Definition: gfpcrypt.h:697
Discrete Log (DL) encryption/decryption keys in GF(p) groups.
Definition: gfpcrypt.h:684
DSA keys.
Definition: gfpcrypt.h:795
Discrete Log (DL) signing/verification keys in GF(p) groups.
Definition: gfpcrypt.h:676
Discrete Log Integrated Encryption Scheme.
Definition: gfpcrypt.h:1026
DSA deterministic signature scheme.
Definition: gfpcrypt.h:846
Returns a decoding results.
Definition: cryptlib.h:283
Converts an enumeration to a type suitable for use as a template parameter.
Definition: cryptlib.h:141
DSA signature scheme.
Definition: gfpcrypt.h:713
NR signature scheme.
Definition: gfpcrypt.h:725
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68