luc.cpp

00001 // luc.cpp - written and placed in the public domain by Wei Dai
00002 
00003 #include "pch.h"
00004 #include "luc.h"
00005 #include "asn.h"
00006 #include "nbtheory.h"
00007 #include "sha.h"
00008 #include "algparam.h"
00009 
00010 NAMESPACE_BEGIN(CryptoPP)
00011 
00012 void LUC_TestInstantiations()
00013 {
00014         LUC_HMP<SHA>::Signer t1;
00015         LUCFunction t2;
00016         InvertibleLUCFunction t3;
00017 }
00018 
00019 void DL_Algorithm_LUC_HMP::Sign(const DL_GroupParameters<Integer> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
00020 {
00021         const Integer &q = params.GetSubgroupOrder();
00022         r = params.ExponentiateBase(k);
00023         s = (k + x*(r+e)) % q;
00024 }
00025 
00026 bool DL_Algorithm_LUC_HMP::Verify(const DL_GroupParameters<Integer> &params, const DL_PublicKey<Integer> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
00027 {
00028         Integer p = params.GetGroupOrder()-1;
00029         const Integer &q = params.GetSubgroupOrder();
00030 
00031         Integer Vsg = params.ExponentiateBase(s);
00032         Integer Vry = publicKey.ExponentiatePublicElement((r+e)%q);
00033         return (Vsg*Vsg + Vry*Vry + r*r) % p == (Vsg * Vry * r + 4) % p;
00034 }
00035 
00036 Integer DL_BasePrecomputation_LUC::Exponentiate(const DL_GroupPrecomputation<Element> &group, const Integer &exponent) const
00037 {
00038         return Lucas(exponent, m_g, static_cast<const DL_GroupPrecomputation_LUC &>(group).GetModulus());
00039 }
00040 
00041 void DL_GroupParameters_LUC::SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
00042 {
00043         for (unsigned int i=0; i<exponentsCount; i++)
00044                 results[i] = Lucas(exponents[i], base, GetModulus());
00045 }
00046 
00047 void LUCFunction::BERDecode(BufferedTransformation &bt)
00048 {
00049         BERSequenceDecoder seq(bt);
00050         m_n.BERDecode(seq);
00051         m_e.BERDecode(seq);
00052         seq.MessageEnd();
00053 }
00054 
00055 void LUCFunction::DEREncode(BufferedTransformation &bt) const
00056 {
00057         DERSequenceEncoder seq(bt);
00058         m_n.DEREncode(seq);
00059         m_e.DEREncode(seq);
00060         seq.MessageEnd();
00061 }
00062 
00063 Integer LUCFunction::ApplyFunction(const Integer &x) const
00064 {
00065         DoQuickSanityCheck();
00066         return Lucas(m_e, x, m_n);
00067 }
00068 
00069 bool LUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
00070 {
00071         bool pass = true;
00072         pass = pass && m_n > Integer::One() && m_n.IsOdd();
00073         pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n;
00074         return pass;
00075 }
00076 
00077 bool LUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
00078 {
00079         return GetValueHelper(this, name, valueType, pValue).Assignable()
00080                 CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
00081                 CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)
00082                 ;
00083 }
00084 
00085 void LUCFunction::AssignFrom(const NameValuePairs &source)
00086 {
00087         AssignFromHelper(this, source)
00088                 CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
00089                 CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)
00090                 ;
00091 }
00092 
00093 // *****************************************************************************
00094 // private key operations:
00095 
00096 class LUCPrimeSelector : public PrimeSelector
00097 {
00098 public:
00099         LUCPrimeSelector(const Integer &e) : m_e(e) {}
00100         bool IsAcceptable(const Integer &candidate) const
00101         {
00102                 return RelativelyPrime(m_e, candidate+1) && RelativelyPrime(m_e, candidate-1);
00103         }
00104         Integer m_e;
00105 };
00106 
00107 void InvertibleLUCFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
00108 {
00109         int modulusSize = 2048;
00110         alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
00111 
00112         if (modulusSize < 16)
00113                 throw InvalidArgument("InvertibleLUCFunction: specified modulus size is too small");
00114 
00115         m_e = alg.GetValueWithDefault("PublicExponent", Integer(17));
00116 
00117         if (m_e < 5 || m_e.IsEven())
00118                 throw InvalidArgument("InvertibleLUCFunction: invalid public exponent");
00119 
00120         LUCPrimeSelector selector(m_e);
00121         const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
00122                 ("PointerToPrimeSelector", selector.GetSelectorPointer());
00123         m_p.GenerateRandom(rng, primeParam);
00124         m_q.GenerateRandom(rng, primeParam);
00125 
00126         m_n = m_p * m_q;
00127         m_u = m_q.InverseMod(m_p);
00128 }
00129 
00130 void InvertibleLUCFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e)
00131 {
00132         GenerateRandom(rng, MakeParameters("ModulusSize", (int)keybits)("PublicExponent", e));
00133 }
00134 
00135 void InvertibleLUCFunction::BERDecode(BufferedTransformation &bt)
00136 {
00137         BERSequenceDecoder seq(bt);
00138 
00139         Integer version(seq);
00140         if (!!version)  // make sure version is 0
00141                 BERDecodeError();
00142 
00143         m_n.BERDecode(seq);
00144         m_e.BERDecode(seq);
00145         m_p.BERDecode(seq);
00146         m_q.BERDecode(seq);
00147         m_u.BERDecode(seq);
00148         seq.MessageEnd();
00149 }
00150 
00151 void InvertibleLUCFunction::DEREncode(BufferedTransformation &bt) const
00152 {
00153         DERSequenceEncoder seq(bt);
00154 
00155         const byte version[] = {INTEGER, 1, 0};
00156         seq.Put(version, sizeof(version));
00157         m_n.DEREncode(seq);
00158         m_e.DEREncode(seq);
00159         m_p.DEREncode(seq);
00160         m_q.DEREncode(seq);
00161         m_u.DEREncode(seq);
00162         seq.MessageEnd();
00163 }
00164 
00165 Integer InvertibleLUCFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
00166 {
00167         // not clear how to do blinding with LUC
00168         DoQuickSanityCheck();
00169         return InverseLucas(m_e, x, m_q, m_p, m_u);
00170 }
00171 
00172 bool InvertibleLUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
00173 {
00174         bool pass = LUCFunction::Validate(rng, level);
00175         pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n;
00176         pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n;
00177         pass = pass && m_u.IsPositive() && m_u < m_p;
00178         if (level >= 1)
00179         {
00180                 pass = pass && m_p * m_q == m_n;
00181                 pass = pass && RelativelyPrime(m_e, m_p+1);
00182                 pass = pass && RelativelyPrime(m_e, m_p-1);
00183                 pass = pass && RelativelyPrime(m_e, m_q+1);
00184                 pass = pass && RelativelyPrime(m_e, m_q-1);
00185                 pass = pass && m_u * m_q % m_p == 1;
00186         }
00187         if (level >= 2)
00188                 pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
00189         return pass;
00190 }
00191 
00192 bool InvertibleLUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
00193 {
00194         return GetValueHelper<LUCFunction>(this, name, valueType, pValue).Assignable()
00195                 CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
00196                 CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
00197                 CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
00198                 ;
00199 }
00200 
00201 void InvertibleLUCFunction::AssignFrom(const NameValuePairs &source)
00202 {
00203         AssignFromHelper<LUCFunction>(this, source)
00204                 CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
00205                 CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
00206                 CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
00207                 ;
00208 }
00209 
00210 NAMESPACE_END

Generated on Sat Dec 23 02:07:08 2006 for Crypto++ by  doxygen 1.5.1-p1