cryptlib.cpp

00001 // cryptlib.cpp - written and placed in the public domain by Wei Dai
00002 
00003 #include "pch.h"
00004 
00005 #ifndef CRYPTOPP_IMPORTS
00006 
00007 #include "cryptlib.h"
00008 #include "misc.h"
00009 #include "filters.h"
00010 #include "algparam.h"
00011 #include "fips140.h"
00012 #include "argnames.h"
00013 #include "fltrimpl.h"
00014 
00015 #include <memory>
00016 
00017 NAMESPACE_BEGIN(CryptoPP)
00018 
00019 CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
00020 CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
00021 CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
00022 #ifdef WORD64_AVAILABLE
00023 CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
00024 #endif
00025 #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
00026 CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
00027 #endif
00028 
00029 const std::string BufferedTransformation::NULL_CHANNEL;
00030 const NullNameValuePairs g_nullNameValuePairs;
00031 
00032 BufferedTransformation & TheBitBucket()
00033 {
00034         static BitBucket bitBucket;
00035         return bitBucket;
00036 }
00037 
00038 Algorithm::Algorithm(bool checkSelfTestStatus)
00039 {
00040         if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
00041         {
00042                 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
00043                         throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");
00044 
00045                 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
00046                         throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
00047         }
00048 }
00049 
00050 void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs &params)
00051 {
00052         this->ThrowIfInvalidKeyLength(length);
00053         this->UncheckedSetKey(key, (unsigned int)length, params);
00054 }
00055 
00056 void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
00057 {
00058         SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
00059 }
00060 
00061 void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv)
00062 {
00063         SetKey(key, length, MakeParameters(Name::IV(), iv));
00064 }
00065 
00066 void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length)
00067 {
00068         if (!IsValidKeyLength(length))
00069                 throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length);
00070 }
00071 
00072 void SimpleKeyingInterface::ThrowIfResynchronizable()
00073 {
00074         if (IsResynchronizable())
00075                 throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV");
00076 }
00077 
00078 void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
00079 {
00080         if (!iv && !(IVRequirement() == INTERNALLY_GENERATED_IV || IVRequirement() == STRUCTURED_IV || !IsResynchronizable()))
00081                 throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV");
00082 }
00083 
00084 const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs &params)
00085 {
00086         const byte *iv;
00087         if (params.GetValue(Name::IV(), iv))
00088                 ThrowIfInvalidIV(iv);
00089         else
00090                 ThrowIfResynchronizable();
00091         return iv;
00092 }
00093 
00094 void BlockTransformation::ProcessAndXorMultipleBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t numberOfBlocks) const
00095 {
00096         unsigned int blockSize = BlockSize();
00097         while (numberOfBlocks--)
00098         {
00099                 ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
00100                 inBlocks += blockSize;
00101                 outBlocks += blockSize;
00102                 if (xorBlocks)
00103                         xorBlocks += blockSize;
00104         }
00105 }
00106 
00107 void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
00108 {
00109         assert(MinLastBlockSize() == 0);        // this function should be overriden otherwise
00110 
00111         if (length == MandatoryBlockSize())
00112                 ProcessData(outString, inString, length);
00113         else if (length != 0)
00114                 throw NotImplemented("StreamTransformation: this object does't support a special last block");
00115 }
00116 
00117 unsigned int RandomNumberGenerator::GenerateBit()
00118 {
00119         return Parity(GenerateByte());
00120 }
00121 
00122 void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
00123 {
00124         while (size--)
00125                 *output++ = GenerateByte();
00126 }
00127 
00128 word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
00129 {
00130         word32 range = max-min;
00131         const int maxBytes = BytePrecision(range);
00132         const int maxBits = BitPrecision(range);
00133 
00134         word32 value;
00135 
00136         do
00137         {
00138                 value = 0;
00139                 for (int i=0; i<maxBytes; i++)
00140                         value = (value << 8) | GenerateByte();
00141 
00142                 value = Crop(value, maxBits);
00143         } while (value > range);
00144 
00145         return value+min;
00146 }
00147 
00148 void RandomNumberGenerator::DiscardBytes(size_t n)
00149 {
00150         while (n--)
00151                 GenerateByte();
00152 }
00153 
00154 //! see NullRNG()
00155 class ClassNullRNG : public RandomNumberGenerator
00156 {
00157 public:
00158         std::string AlgorithmName() const {return "NullRNG";}
00159         byte GenerateByte() {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
00160 };
00161 
00162 RandomNumberGenerator & NullRNG()
00163 {
00164         static ClassNullRNG s_nullRNG;
00165         return s_nullRNG;
00166 }
00167 
00168 bool HashTransformation::TruncatedVerify(const byte *digestIn, size_t digestLength)
00169 {
00170         ThrowIfInvalidTruncatedSize(digestLength);
00171         SecByteBlock digest(digestLength);
00172         TruncatedFinal(digest, digestLength);
00173         return memcmp(digest, digestIn, digestLength) == 0;
00174 }
00175 
00176 void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
00177 {
00178         if (size > DigestSize())
00179                 throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
00180 }
00181 
00182 unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
00183 {
00184         const BufferedTransformation *t = AttachedTransformation();
00185         return t ? t->GetMaxWaitObjectCount() : 0;
00186 }
00187 
00188 void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
00189 {
00190         BufferedTransformation *t = AttachedTransformation();
00191         if (t)
00192                 t->GetWaitObjects(container, callStack);  // reduce clutter by not adding to stack here
00193 }
00194 
00195 void BufferedTransformation::Initialize(const NameValuePairs &parameters, int propagation)
00196 {
00197         assert(!AttachedTransformation());
00198         IsolatedInitialize(parameters);
00199 }
00200 
00201 bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
00202 {
00203         assert(!AttachedTransformation());
00204         return IsolatedFlush(hardFlush, blocking);
00205 }
00206 
00207 bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
00208 {
00209         assert(!AttachedTransformation());
00210         return IsolatedMessageSeriesEnd(blocking);
00211 }
00212 
00213 byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
00214 {
00215         if (channel.empty())
00216                 return CreatePutSpace(size);
00217         else
00218                 throw NoChannelSupport();
00219 }
00220 
00221 size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
00222 {
00223         if (channel.empty())
00224                 return Put2(begin, length, messageEnd, blocking);
00225         else
00226                 throw NoChannelSupport();
00227 }
00228 
00229 size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
00230 {
00231         if (channel.empty())
00232                 return PutModifiable2(begin, length, messageEnd, blocking);
00233         else
00234                 return ChannelPut2(channel, begin, length, messageEnd, blocking);
00235 }
00236 
00237 bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
00238 {
00239         if (channel.empty())
00240                 return Flush(completeFlush, propagation, blocking);
00241         else
00242                 throw NoChannelSupport();
00243 }
00244 
00245 bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
00246 {
00247         if (channel.empty())
00248                 return MessageSeriesEnd(propagation, blocking);
00249         else
00250                 throw NoChannelSupport();
00251 }
00252 
00253 lword BufferedTransformation::MaxRetrievable() const
00254 {
00255         if (AttachedTransformation())
00256                 return AttachedTransformation()->MaxRetrievable();
00257         else
00258                 return CopyTo(TheBitBucket());
00259 }
00260 
00261 bool BufferedTransformation::AnyRetrievable() const
00262 {
00263         if (AttachedTransformation())
00264                 return AttachedTransformation()->AnyRetrievable();
00265         else
00266         {
00267                 byte b;
00268                 return Peek(b) != 0;
00269         }
00270 }
00271 
00272 size_t BufferedTransformation::Get(byte &outByte)
00273 {
00274         if (AttachedTransformation())
00275                 return AttachedTransformation()->Get(outByte);
00276         else
00277                 return Get(&outByte, 1);
00278 }
00279 
00280 size_t BufferedTransformation::Get(byte *outString, size_t getMax)
00281 {
00282         if (AttachedTransformation())
00283                 return AttachedTransformation()->Get(outString, getMax);
00284         else
00285         {
00286                 ArraySink arraySink(outString, getMax);
00287                 return (size_t)TransferTo(arraySink, getMax);
00288         }
00289 }
00290 
00291 size_t BufferedTransformation::Peek(byte &outByte) const
00292 {
00293         if (AttachedTransformation())
00294                 return AttachedTransformation()->Peek(outByte);
00295         else
00296                 return Peek(&outByte, 1);
00297 }
00298 
00299 size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
00300 {
00301         if (AttachedTransformation())
00302                 return AttachedTransformation()->Peek(outString, peekMax);
00303         else
00304         {
00305                 ArraySink arraySink(outString, peekMax);
00306                 return (size_t)CopyTo(arraySink, peekMax);
00307         }
00308 }
00309 
00310 lword BufferedTransformation::Skip(lword skipMax)
00311 {
00312         if (AttachedTransformation())
00313                 return AttachedTransformation()->Skip(skipMax);
00314         else
00315                 return TransferTo(TheBitBucket(), skipMax);
00316 }
00317 
00318 lword BufferedTransformation::TotalBytesRetrievable() const
00319 {
00320         if (AttachedTransformation())
00321                 return AttachedTransformation()->TotalBytesRetrievable();
00322         else
00323                 return MaxRetrievable();
00324 }
00325 
00326 unsigned int BufferedTransformation::NumberOfMessages() const
00327 {
00328         if (AttachedTransformation())
00329                 return AttachedTransformation()->NumberOfMessages();
00330         else
00331                 return CopyMessagesTo(TheBitBucket());
00332 }
00333 
00334 bool BufferedTransformation::AnyMessages() const
00335 {
00336         if (AttachedTransformation())
00337                 return AttachedTransformation()->AnyMessages();
00338         else
00339                 return NumberOfMessages() != 0;
00340 }
00341 
00342 bool BufferedTransformation::GetNextMessage()
00343 {
00344         if (AttachedTransformation())
00345                 return AttachedTransformation()->GetNextMessage();
00346         else
00347         {
00348                 assert(!AnyMessages());
00349                 return false;
00350         }
00351 }
00352 
00353 unsigned int BufferedTransformation::SkipMessages(unsigned int count)
00354 {
00355         if (AttachedTransformation())
00356                 return AttachedTransformation()->SkipMessages(count);
00357         else
00358                 return TransferMessagesTo(TheBitBucket(), count);
00359 }
00360 
00361 size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
00362 {
00363         if (AttachedTransformation())
00364                 return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
00365         else
00366         {
00367                 unsigned int maxMessages = messageCount;
00368                 for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
00369                 {
00370                         size_t blockedBytes;
00371                         lword transferredBytes;
00372 
00373                         while (AnyRetrievable())
00374                         {
00375                                 transferredBytes = LWORD_MAX;
00376                                 blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
00377                                 if (blockedBytes > 0)
00378                                         return blockedBytes;
00379                         }
00380 
00381                         if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
00382                                 return 1;
00383 
00384                         bool result = GetNextMessage();
00385                         assert(result);
00386                 }
00387                 return 0;
00388         }
00389 }
00390 
00391 unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
00392 {
00393         if (AttachedTransformation())
00394                 return AttachedTransformation()->CopyMessagesTo(target, count, channel);
00395         else
00396                 return 0;
00397 }
00398 
00399 void BufferedTransformation::SkipAll()
00400 {
00401         if (AttachedTransformation())
00402                 AttachedTransformation()->SkipAll();
00403         else
00404         {
00405                 while (SkipMessages()) {}
00406                 while (Skip()) {}
00407         }
00408 }
00409 
00410 size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
00411 {
00412         if (AttachedTransformation())
00413                 return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
00414         else
00415         {
00416                 assert(!NumberOfMessageSeries());
00417 
00418                 unsigned int messageCount;
00419                 do
00420                 {
00421                         messageCount = UINT_MAX;
00422                         size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
00423                         if (blockedBytes)
00424                                 return blockedBytes;
00425                 }
00426                 while (messageCount != 0);
00427 
00428                 lword byteCount;
00429                 do
00430                 {
00431                         byteCount = ULONG_MAX;
00432                         size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
00433                         if (blockedBytes)
00434                                 return blockedBytes;
00435                 }
00436                 while (byteCount != 0);
00437 
00438                 return 0;
00439         }
00440 }
00441 
00442 void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
00443 {
00444         if (AttachedTransformation())
00445                 AttachedTransformation()->CopyAllTo(target, channel);
00446         else
00447         {
00448                 assert(!NumberOfMessageSeries());
00449                 while (CopyMessagesTo(target, UINT_MAX, channel)) {}
00450         }
00451 }
00452 
00453 void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
00454 {
00455         if (AttachedTransformation())
00456                 AttachedTransformation()->SetRetrievalChannel(channel);
00457 }
00458 
00459 size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
00460 {
00461         PutWord(false, order, m_buf, value);
00462         return ChannelPut(channel, m_buf, 2, blocking);
00463 }
00464 
00465 size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
00466 {
00467         PutWord(false, order, m_buf, value);
00468         return ChannelPut(channel, m_buf, 4, blocking);
00469 }
00470 
00471 size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
00472 {
00473         return ChannelPutWord16(NULL_CHANNEL, value, order, blocking);
00474 }
00475 
00476 size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
00477 {
00478         return ChannelPutWord32(NULL_CHANNEL, value, order, blocking);
00479 }
00480 
00481 size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
00482 {
00483         byte buf[2] = {0, 0};
00484         size_t len = Peek(buf, 2);
00485 
00486         if (order)
00487                 value = (buf[0] << 8) | buf[1];
00488         else
00489                 value = (buf[1] << 8) | buf[0];
00490 
00491         return len;
00492 }
00493 
00494 size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
00495 {
00496         byte buf[4] = {0, 0, 0, 0};
00497         size_t len = Peek(buf, 4);
00498 
00499         if (order)
00500                 value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
00501         else
00502                 value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];
00503 
00504         return len;
00505 }
00506 
00507 size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
00508 {
00509         return (size_t)Skip(PeekWord16(value, order));
00510 }
00511 
00512 size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
00513 {
00514         return (size_t)Skip(PeekWord32(value, order));
00515 }
00516 
00517 void BufferedTransformation::Attach(BufferedTransformation *newOut)
00518 {
00519         if (AttachedTransformation() && AttachedTransformation()->Attachable())
00520                 AttachedTransformation()->Attach(newOut);
00521         else
00522                 Detach(newOut);
00523 }
00524 
00525 void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
00526 {
00527         GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
00528 }
00529 
00530 class PK_DefaultEncryptionFilter : public Unflushable<Filter>
00531 {
00532 public:
00533         PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
00534                 : m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
00535         {
00536                 Detach(attachment);
00537         }
00538 
00539         size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
00540         {
00541                 FILTER_BEGIN;
00542                 m_plaintextQueue.Put(inString, length);
00543 
00544                 if (messageEnd)
00545                 {
00546                         {
00547                         size_t plaintextLength;
00548                         if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
00549                                 throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
00550                         size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
00551 
00552                         SecByteBlock plaintext(plaintextLength);
00553                         m_plaintextQueue.Get(plaintext, plaintextLength);
00554                         m_ciphertext.resize(ciphertextLength);
00555                         m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
00556                         }
00557                         
00558                         FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
00559                 }
00560                 FILTER_END_NO_MESSAGE_END;
00561         }
00562 
00563         RandomNumberGenerator &m_rng;
00564         const PK_Encryptor &m_encryptor;
00565         const NameValuePairs &m_parameters;
00566         ByteQueue m_plaintextQueue;
00567         SecByteBlock m_ciphertext;
00568 };
00569 
00570 BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
00571 {
00572         return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
00573 }
00574 
00575 class PK_DefaultDecryptionFilter : public Unflushable<Filter>
00576 {
00577 public:
00578         PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
00579                 : m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
00580         {
00581                 Detach(attachment);
00582         }
00583 
00584         size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
00585         {
00586                 FILTER_BEGIN;
00587                 m_ciphertextQueue.Put(inString, length);
00588 
00589                 if (messageEnd)
00590                 {
00591                         {
00592                         size_t ciphertextLength;
00593                         if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
00594                                 throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
00595                         size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
00596 
00597                         SecByteBlock ciphertext(ciphertextLength);
00598                         m_ciphertextQueue.Get(ciphertext, ciphertextLength);
00599                         m_plaintext.resize(maxPlaintextLength);
00600                         m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
00601                         if (!m_result.isValidCoding)
00602                                 throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
00603                         }
00604 
00605                         FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
00606                 }
00607                 FILTER_END_NO_MESSAGE_END;
00608         }
00609 
00610         RandomNumberGenerator &m_rng;
00611         const PK_Decryptor &m_decryptor;
00612         const NameValuePairs &m_parameters;
00613         ByteQueue m_ciphertextQueue;
00614         SecByteBlock m_plaintext;
00615         DecodingResult m_result;
00616 };
00617 
00618 BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
00619 {
00620         return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
00621 }
00622 
00623 size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
00624 {
00625         std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00626         return SignAndRestart(rng, *m, signature, false);
00627 }
00628 
00629 size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
00630 {
00631         std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00632         m->Update(message, messageLen);
00633         return SignAndRestart(rng, *m, signature, false);
00634 }
00635 
00636 size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength, 
00637         const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
00638 {
00639         std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00640         InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
00641         m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00642         return SignAndRestart(rng, *m, signature, false);
00643 }
00644 
00645 bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
00646 {
00647         std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00648         return VerifyAndRestart(*m);
00649 }
00650 
00651 bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLength) const
00652 {
00653         std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00654         InputSignature(*m, signature, signatureLength);
00655         m->Update(message, messageLen);
00656         return VerifyAndRestart(*m);
00657 }
00658 
00659 DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
00660 {
00661         std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00662         return RecoverAndRestart(recoveredMessage, *m);
00663 }
00664 
00665 DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage, 
00666         const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, 
00667         const byte *signature, size_t signatureLength) const
00668 {
00669         std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00670         InputSignature(*m, signature, signatureLength);
00671         m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00672         return RecoverAndRestart(recoveredMessage, *m);
00673 }
00674 
00675 void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00676 {
00677         GeneratePrivateKey(rng, privateKey);
00678         GeneratePublicKey(rng, privateKey, publicKey);
00679 }
00680 
00681 void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00682 {
00683         GenerateStaticPrivateKey(rng, privateKey);
00684         GenerateStaticPublicKey(rng, privateKey, publicKey);
00685 }
00686 
00687 void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00688 {
00689         GenerateEphemeralPrivateKey(rng, privateKey);
00690         GenerateEphemeralPublicKey(rng, privateKey, publicKey);
00691 }
00692 
00693 NAMESPACE_END
00694 
00695 #endif

Generated on Sat Dec 23 02:07:06 2006 for Crypto++ by  doxygen 1.5.1-p1