Crypto++  8.8
Free C++ class library of cryptographic schemes
tiger.cpp
1 // tiger.cpp - originally written and placed in the public domain by Wei Dai
2 
3 #include "pch.h"
4 #include "config.h"
5 
6 #include "tiger.h"
7 #include "misc.h"
8 #include "cpu.h"
9 
10 #if defined(CRYPTOPP_DISABLE_TIGER_ASM)
11 # undef CRYPTOPP_X86_ASM_AVAILABLE
12 # undef CRYPTOPP_X32_ASM_AVAILABLE
13 # undef CRYPTOPP_X64_ASM_AVAILABLE
14 # undef CRYPTOPP_SSE2_ASM_AVAILABLE
15 #endif
16 
17 NAMESPACE_BEGIN(CryptoPP)
18 
19 std::string Tiger::AlgorithmProvider() const
20 {
21 #ifndef CRYPTOPP_DISABLE_TIGER_ASM
22 # if CRYPTOPP_SSE2_ASM_AVAILABLE
23  if (HasSSE2())
24  return "SSE2";
25 # endif
26 #endif
27  return "C++";
28 }
29 
30 void Tiger::InitState(HashWordType *state)
31 {
32  state[0] = W64LIT(0x0123456789ABCDEF);
33  state[1] = W64LIT(0xFEDCBA9876543210);
34  state[2] = W64LIT(0xF096A5B4C3B2E187);
35 }
36 
37 void Tiger::TruncatedFinal(byte *digest, size_t digestSize)
38 {
39  CRYPTOPP_ASSERT(digest != NULLPTR);
40  ThrowIfInvalidTruncatedSize(digestSize);
41 
42  PadLastBlock(56, 0x01);
43  CorrectEndianess(m_data, m_data, 56);
44 
45  m_data[7] = GetBitCountLo();
46 
47  Transform(m_state, m_data);
48  CorrectEndianess(m_state, m_state, DigestSize());
49  std::memcpy(digest, m_state, digestSize);
50 
51  Restart(); // reinit for next use
52 }
53 
54 void Tiger::Transform (word64 *state, const word64 *data)
55 {
56 #if CRYPTOPP_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
57  if (HasSSE2())
58  {
59 #ifdef __GNUC__
60  __asm__ __volatile__
61  (
62  INTEL_NOPREFIX
63  AS_PUSH_IF86(bx)
64 #else
65  AS2( lea edx, [table])
66  AS2( mov eax, state)
67  AS2( mov esi, data)
68 #endif
69  AS2( movq mm0, [eax])
70  AS2( movq mm1, [eax+1*8])
71  AS2( movq mm5, mm1)
72  AS2( movq mm2, [eax+2*8])
73  AS2( movq mm7, [edx+4*2048+0*8])
74  AS2( movq mm6, [edx+4*2048+1*8])
75  AS2( mov ecx, esp)
76  AS2( and esp, 0xfffffff0)
77  AS2( sub esp, 8*8)
78  AS_PUSH_IF86(cx)
79 
80 #define SSE2_round(a,b,c,x,mul) \
81  AS2( pxor c, [x])\
82  AS2( movd ecx, c)\
83  AS2( movzx edi, cl)\
84  AS2( movq mm3, [edx+0*2048+edi*8])\
85  AS2( movzx edi, ch)\
86  AS2( movq mm4, [edx+3*2048+edi*8])\
87  AS2( shr ecx, 16)\
88  AS2( movzx edi, cl)\
89  AS2( pxor mm3, [edx+1*2048+edi*8])\
90  AS2( movzx edi, ch)\
91  AS2( pxor mm4, [edx+2*2048+edi*8])\
92  AS3( pextrw ecx, c, 2)\
93  AS2( movzx edi, cl)\
94  AS2( pxor mm3, [edx+2*2048+edi*8])\
95  AS2( movzx edi, ch)\
96  AS2( pxor mm4, [edx+1*2048+edi*8])\
97  AS3( pextrw ecx, c, 3)\
98  AS2( movzx edi, cl)\
99  AS2( pxor mm3, [edx+3*2048+edi*8])\
100  AS2( psubq a, mm3)\
101  AS2( movzx edi, ch)\
102  AS2( pxor mm4, [edx+0*2048+edi*8])\
103  AS2( paddq b, mm4)\
104  SSE2_mul_##mul(b)
105 
106 #define SSE2_mul_5(b) \
107  AS2( movq mm3, b)\
108  AS2( psllq b, 2)\
109  AS2( paddq b, mm3)
110 
111 #define SSE2_mul_7(b) \
112  AS2( movq mm3, b)\
113  AS2( psllq b, 3)\
114  AS2( psubq b, mm3)
115 
116 #define SSE2_mul_9(b) \
117  AS2( movq mm3, b)\
118  AS2( psllq b, 3)\
119  AS2( paddq b, mm3)
120 
121 #define label2_5 1
122 #define label2_7 2
123 #define label2_9 3
124 
125 #define SSE2_pass(A,B,C,mul,X) \
126  AS2( xor ebx, ebx)\
127  ASL(mul)\
128  SSE2_round(A,B,C,X+0*8+ebx,mul)\
129  SSE2_round(B,C,A,X+1*8+ebx,mul)\
130  AS2( cmp ebx, 6*8)\
131  ASJ( je, label2_##mul, f)\
132  SSE2_round(C,A,B,X+2*8+ebx,mul)\
133  AS2( add ebx, 3*8)\
134  ASJ( jmp, mul, b)\
135  ASL(label2_##mul)
136 
137 #define SSE2_key_schedule(Y,X) \
138  AS2( movq mm3, [X+7*8])\
139  AS2( pxor mm3, mm6)\
140  AS2( movq mm4, [X+0*8])\
141  AS2( psubq mm4, mm3)\
142  AS2( movq [Y+0*8], mm4)\
143  AS2( pxor mm4, [X+1*8])\
144  AS2( movq mm3, mm4)\
145  AS2( movq [Y+1*8], mm4)\
146  AS2( paddq mm4, [X+2*8])\
147  AS2( pxor mm3, mm7)\
148  AS2( psllq mm3, 19)\
149  AS2( movq [Y+2*8], mm4)\
150  AS2( pxor mm3, mm4)\
151  AS2( movq mm4, [X+3*8])\
152  AS2( psubq mm4, mm3)\
153  AS2( movq [Y+3*8], mm4)\
154  AS2( pxor mm4, [X+4*8])\
155  AS2( movq mm3, mm4)\
156  AS2( movq [Y+4*8], mm4)\
157  AS2( paddq mm4, [X+5*8])\
158  AS2( pxor mm3, mm7)\
159  AS2( psrlq mm3, 23)\
160  AS2( movq [Y+5*8], mm4)\
161  AS2( pxor mm3, mm4)\
162  AS2( movq mm4, [X+6*8])\
163  AS2( psubq mm4, mm3)\
164  AS2( movq [Y+6*8], mm4)\
165  AS2( pxor mm4, [X+7*8])\
166  AS2( movq mm3, mm4)\
167  AS2( movq [Y+7*8], mm4)\
168  AS2( paddq mm4, [Y+0*8])\
169  AS2( pxor mm3, mm7)\
170  AS2( psllq mm3, 19)\
171  AS2( movq [Y+0*8], mm4)\
172  AS2( pxor mm3, mm4)\
173  AS2( movq mm4, [Y+1*8])\
174  AS2( psubq mm4, mm3)\
175  AS2( movq [Y+1*8], mm4)\
176  AS2( pxor mm4, [Y+2*8])\
177  AS2( movq mm3, mm4)\
178  AS2( movq [Y+2*8], mm4)\
179  AS2( paddq mm4, [Y+3*8])\
180  AS2( pxor mm3, mm7)\
181  AS2( psrlq mm3, 23)\
182  AS2( movq [Y+3*8], mm4)\
183  AS2( pxor mm3, mm4)\
184  AS2( movq mm4, [Y+4*8])\
185  AS2( psubq mm4, mm3)\
186  AS2( movq [Y+4*8], mm4)\
187  AS2( pxor mm4, [Y+5*8])\
188  AS2( movq [Y+5*8], mm4)\
189  AS2( paddq mm4, [Y+6*8])\
190  AS2( movq [Y+6*8], mm4)\
191  AS2( pxor mm4, [edx+4*2048+2*8])\
192  AS2( movq mm3, [Y+7*8])\
193  AS2( psubq mm3, mm4)\
194  AS2( movq [Y+7*8], mm3)
195 
196  SSE2_pass(mm0, mm1, mm2, 5, esi)
197  SSE2_key_schedule(esp+4, esi)
198  SSE2_pass(mm2, mm0, mm1, 7, esp+4)
199  SSE2_key_schedule(esp+4, esp+4)
200  SSE2_pass(mm1, mm2, mm0, 9, esp+4)
201 
202  AS2( pxor mm0, [eax+0*8])
203  AS2( movq [eax+0*8], mm0)
204  AS2( psubq mm1, mm5)
205  AS2( movq [eax+1*8], mm1)
206  AS2( paddq mm2, [eax+2*8])
207  AS2( movq [eax+2*8], mm2)
208 
209  AS_POP_IF86(sp)
210  AS1( emms)
211 
212 #ifdef __GNUC__
213  AS_POP_IF86(bx)
214  ATT_PREFIX
215  :
216  : "a" (state), "S" (data), "d" (table)
217  : "%ecx", "%edi", "memory", "cc"
218  );
219 #endif
220  }
221  else
222 #endif
223  {
224  word64 a = state[0];
225  word64 b = state[1];
226  word64 c = state[2];
227  word64 Y[8];
228 
229 #define t1 (table)
230 #define t2 (table+256)
231 #define t3 (table+256*2)
232 #define t4 (table+256*3)
233 
234 #define round(a,b,c,x,mul) \
235  c ^= x; \
236  a -= t1[GETBYTE(c,0)] ^ t2[GETBYTE(c,2)] ^ t3[GETBYTE(c,4)] ^ t4[GETBYTE(c,6)]; \
237  b += t4[GETBYTE(c,1)] ^ t3[GETBYTE(c,3)] ^ t2[GETBYTE(c,5)] ^ t1[GETBYTE(c,7)]; \
238  b *= mul
239 
240 #define pass(a,b,c,mul,X) {\
241  int i=0;\
242  while (true)\
243  {\
244  round(a,b,c,X[i+0],mul); \
245  round(b,c,a,X[i+1],mul); \
246  if (i==6)\
247  break;\
248  round(c,a,b,X[i+2],mul); \
249  i+=3;\
250  }}
251 
252 #define key_schedule(Y,X) \
253  Y[0] = X[0] - (X[7]^W64LIT(0xA5A5A5A5A5A5A5A5)); \
254  Y[1] = X[1] ^ Y[0]; \
255  Y[2] = X[2] + Y[1]; \
256  Y[3] = X[3] - (Y[2] ^ ((~Y[1])<<19)); \
257  Y[4] = X[4] ^ Y[3]; \
258  Y[5] = X[5] + Y[4]; \
259  Y[6] = X[6] - (Y[5] ^ ((~Y[4])>>23)); \
260  Y[7] = X[7] ^ Y[6]; \
261  Y[0] += Y[7]; \
262  Y[1] -= Y[0] ^ ((~Y[7])<<19); \
263  Y[2] ^= Y[1]; \
264  Y[3] += Y[2]; \
265  Y[4] -= Y[3] ^ ((~Y[2])>>23); \
266  Y[5] ^= Y[4]; \
267  Y[6] += Y[5]; \
268  Y[7] -= Y[6] ^ W64LIT(0x0123456789ABCDEF)
269 
270  pass(a,b,c,5,data);
271  key_schedule(Y,data);
272  pass(c,a,b,7,Y);
273  key_schedule(Y,Y);
274  pass(b,c,a,9,Y);
275 
276  state[0] = a ^ state[0];
277  state[1] = b - state[1];
278  state[2] = c + state[2];
279  }
280 }
281 
282 NAMESPACE_END
unsigned int DigestSize() const
Provides the digest size of the hash.
Definition: iterhash.h:191
static void Transform(word64 *digest, const word64 *data)
Operate the hash.
Definition: tiger.cpp:54
static void InitState(HashWordType *state)
Initialize state array.
Definition: tiger.cpp:30
void TruncatedFinal(byte *digest, size_t digestSize)
Computes the hash of the current message.
Definition: tiger.cpp:37
Library configuration file.
#define W64LIT(x)
Declare an unsigned word64.
Definition: config_int.h:129
unsigned long long word64
64-bit unsigned datatype
Definition: config_int.h:101
Functions for CPU features and intrinsics.
Utility functions for the Crypto++ library.
Crypto++ library namespace.
Precompiled header file.
Classes for the Tiger message digest.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68