Crypto++  8.8
Free C++ class library of cryptographic schemes
cryptlib.cpp
1 // cryptlib.cpp - originally written and placed in the public domain by Wei Dai
2 
3 #include "pch.h"
4 #include "config.h"
5 
6 #if CRYPTOPP_MSC_VERSION
7 # pragma warning(disable: 4127 4189 4459)
8 #endif
9 
10 #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
11 # pragma GCC diagnostic ignored "-Wunused-value"
12 # pragma GCC diagnostic ignored "-Wunused-variable"
13 # pragma GCC diagnostic ignored "-Wunused-parameter"
14 #endif
15 
16 #ifndef CRYPTOPP_IMPORTS
17 
18 #include "cryptlib.h"
19 #include "filters.h"
20 #include "algparam.h"
21 #include "fips140.h"
22 #include "argnames.h"
23 #include "fltrimpl.h"
24 #include "osrng.h"
25 #include "secblock.h"
26 #include "smartptr.h"
27 #include "stdcpp.h"
28 #include "misc.h"
29 
30 NAMESPACE_BEGIN(CryptoPP)
31 
32 CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
33 CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
34 CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
35 CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
36 #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
37 CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
38 #endif
39 
41 {
42  static BitBucket bitBucket;
43  return bitBucket;
44 }
45 
46 Algorithm::Algorithm(bool checkSelfTestStatus)
47 {
48  if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
49  {
50  if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
51  throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");
52 
54  throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
55  }
56 }
57 
58 void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs &params)
59 {
60  this->ThrowIfInvalidKeyLength(length);
61  this->UncheckedSetKey(key, static_cast<unsigned int>(length), params);
62 }
63 
64 void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
65 {
66  SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
67 }
68 
69 void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength)
70 {
71  SetKey(key, length, MakeParameters(Name::IV(), ConstByteArrayParameter(iv, ivLength)));
72 }
73 
74 void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length)
75 {
76  if (!IsValidKeyLength(length))
77  throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length);
78 }
79 
80 void SimpleKeyingInterface::ThrowIfResynchronizable()
81 {
82  if (IsResynchronizable())
83  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV");
84 }
85 
86 void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
87 {
88  if (!iv && IVRequirement() == UNPREDICTABLE_RANDOM_IV)
89  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV");
90 }
91 
92 size_t SimpleKeyingInterface::ThrowIfInvalidIVLength(int length)
93 {
94  size_t size = 0;
95  if (length < 0)
96  size = static_cast<size_t>(IVSize());
97  else if ((size_t)length < MinIVLength())
98  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(length) + " is less than the minimum of " + IntToString(MinIVLength()));
99  else if ((size_t)length > MaxIVLength())
100  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(length) + " exceeds the maximum of " + IntToString(MaxIVLength()));
101  else
102  size = static_cast<size_t>(length);
103 
104  return size;
105 }
106 
107 const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size)
108 {
109  ConstByteArrayParameter ivWithLength;
110  const byte *iv = NULLPTR;
111  bool found = false;
112 
113  try {found = params.GetValue(Name::IV(), ivWithLength);}
114  catch (const NameValuePairs::ValueTypeMismatch &) {}
115 
116  if (found)
117  {
118  iv = ivWithLength.begin();
119  ThrowIfInvalidIV(iv);
120  size = ThrowIfInvalidIVLength(static_cast<int>(ivWithLength.size()));
121  }
122  else if (params.GetValue(Name::IV(), iv))
123  {
124  ThrowIfInvalidIV(iv);
125  size = static_cast<size_t>(IVSize());
126  }
127  else
128  {
129  ThrowIfResynchronizable();
130  size = 0;
131  }
132 
133  return iv;
134 }
135 
137 {
138  rng.GenerateBlock(iv, IVSize());
139 }
140 
141 size_t BlockTransformation::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const
142 {
143  CRYPTOPP_ASSERT(inBlocks);
144  CRYPTOPP_ASSERT(outBlocks);
145  CRYPTOPP_ASSERT(length);
146 
147  const unsigned int blockSize = BlockSize();
148  size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
149  size_t xorIncrement = xorBlocks ? blockSize : 0;
150  size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
151 
152  if (flags & BT_ReverseDirection)
153  {
154  inBlocks = PtrAdd(inBlocks, length - blockSize);
155  xorBlocks = PtrAdd(xorBlocks, length - blockSize);
156  outBlocks = PtrAdd(outBlocks, length - blockSize);
157  inIncrement = 0-inIncrement;
158  xorIncrement = 0-xorIncrement;
159  outIncrement = 0-outIncrement;
160  }
161 
162  // Coverity finding.
163  const bool xorFlag = xorBlocks && (flags & BT_XorInput);
164  while (length >= blockSize)
165  {
166  if (xorFlag)
167  {
168  // xorBlocks non-NULL and with BT_XorInput.
169  xorbuf(outBlocks, xorBlocks, inBlocks, blockSize);
170  ProcessBlock(outBlocks);
171  }
172  else
173  {
174  // xorBlocks may be non-NULL and without BT_XorInput.
175  ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
176  }
177 
178  if (flags & BT_InBlockIsCounter)
179  const_cast<byte *>(inBlocks)[blockSize-1]++;
180 
181  inBlocks = PtrAdd(inBlocks, inIncrement);
182  outBlocks = PtrAdd(outBlocks, outIncrement);
183  xorBlocks = PtrAdd(xorBlocks, xorIncrement);
184  length -= blockSize;
185  }
186 
187  return length;
188 }
189 
191 {
192  return GetAlignmentOf<word32>();
193 }
194 
196 {
197  return GetAlignmentOf<word32>();
198 }
199 
200 unsigned int HashTransformation::OptimalDataAlignment() const
201 {
202  return GetAlignmentOf<word32>();
203 }
204 
205 #if 0
206 void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
207 {
208  CRYPTOPP_ASSERT(MinLastBlockSize() == 0); // this function should be overridden otherwise
209 
210  if (length == MandatoryBlockSize())
211  ProcessData(outString, inString, length);
212  else if (length != 0)
213  throw NotImplemented(AlgorithmName() + ": this object doesn't support a special last block");
214 }
215 #endif
216 
217 size_t StreamTransformation::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
218 {
219  // this function should be overridden otherwise
221 
222  if (inLength == MandatoryBlockSize())
223  {
224  outLength = inLength; // squash unused warning
225  ProcessData(outString, inString, inLength);
226  }
227  else if (inLength != 0)
228  throw NotImplemented(AlgorithmName() + ": this object doesn't support a special last block");
229 
230  return outLength;
231 }
232 
233 void AuthenticatedSymmetricCipher::SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
234 {
235  if (headerLength > MaxHeaderLength())
236  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": header length " + IntToString(headerLength) + " exceeds the maximum of " + IntToString(MaxHeaderLength()));
237 
238  if (messageLength > MaxMessageLength())
239  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": message length " + IntToString(messageLength) + " exceeds the maximum of " + IntToString(MaxMessageLength()));
240 
241  if (footerLength > MaxFooterLength())
242  throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": footer length " + IntToString(footerLength) + " exceeds the maximum of " + IntToString(MaxFooterLength()));
243 
244  UncheckedSpecifyDataLengths(headerLength, messageLength, footerLength);
245 }
246 
247 void AuthenticatedSymmetricCipher::EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength)
248 {
249  Resynchronize(iv, ivLength);
250  SpecifyDataLengths(headerLength, messageLength);
251  Update(header, headerLength);
252  ProcessString(ciphertext, message, messageLength);
253  TruncatedFinal(mac, macSize);
254 }
255 
256 bool AuthenticatedSymmetricCipher::DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength)
257 {
258  Resynchronize(iv, ivLength);
259  SpecifyDataLengths(headerLength, ciphertextLength);
260  Update(header, headerLength);
261  ProcessString(message, ciphertext, ciphertextLength);
262  return TruncatedVerify(mac, macLength);
263 }
264 
266 {
267  // Squash C4505 on Visual Studio 2008 and friends
268  return "Unknown";
269 }
270 
272 {
273  return GenerateByte() & 1;
274 }
275 
277 {
278  byte b;
279  GenerateBlock(&b, 1);
280  return b;
281 }
282 
284 {
285  const word32 range = max-min;
286  const unsigned int maxBits = BitPrecision(range);
287 
288  word32 value;
289 
290  do
291  {
292  GenerateBlock((byte *)&value, sizeof(value));
293  value = Crop(value, maxBits);
294  } while (value > range);
295 
296  return value+min;
297 }
298 
299 // Stack recursion below... GenerateIntoBufferedTransformation calls GenerateBlock,
300 // and GenerateBlock calls GenerateIntoBufferedTransformation. Ad infinitum. Also
301 // see http://github.com/weidai11/cryptopp/issues/38.
302 //
303 // According to Wei, RandomNumberGenerator is an interface, and it should not
304 // be instantiable. Its now spilt milk, and we are going to CRYPTOPP_ASSERT it in Debug
305 // builds to alert the programmer and throw in Release builds. Developers have
306 // a reference implementation in case its needed. If a programmer
307 // unintentionally lands here, then they should ensure use of a
308 // RandomNumberGenerator pointer or reference so polymorphism can provide the
309 // proper runtime dispatching.
310 
311 void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
312 {
313  CRYPTOPP_UNUSED(output), CRYPTOPP_UNUSED(size);
314 
315  ArraySink s(output, size);
317 }
318 
320 {
322 }
323 
324 void RandomNumberGenerator::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
325 {
327  while (length)
328  {
329  size_t len = UnsignedMin(buffer.size(), length);
330  GenerateBlock(buffer, len);
331  (void)target.ChannelPut(channel, buffer, len);
332  length -= len;
333  }
334 }
335 
337 {
338  return 0;
339 }
340 
342 {
343  return static_cast<size_t>(-1);
344 }
345 
346 void KeyDerivationFunction::ThrowIfInvalidDerivedKeyLength(size_t length) const
347 {
348  if (!IsValidDerivedLength(length))
349  throw InvalidDerivedKeyLength(GetAlgorithm().AlgorithmName(), length);
350 }
351 
353  CRYPTOPP_UNUSED(params);
354 }
355 
356 /// \brief Random Number Generator that does not produce random numbers
357 /// \details ClassNullRNG can be used for functions that require a RandomNumberGenerator
358 /// but don't actually use it. The class throws NotImplemented when a generation function is called.
359 /// \sa NullRNG()
360 class ClassNullRNG : public RandomNumberGenerator
361 {
362 public:
363  /// \brief The name of the generator
364  /// \returns the string \a NullRNGs
365  std::string AlgorithmName() const {return "NullRNG";}
366 
367 #if defined(CRYPTOPP_DOXYGEN_PROCESSING)
368  /// \brief An implementation that throws NotImplemented
369  byte GenerateByte () {}
370  /// \brief An implementation that throws NotImplemented
371  unsigned int GenerateBit () {}
372  /// \brief An implementation that throws NotImplemented
373  word32 GenerateWord32 (word32 min, word32 max) {}
374 #endif
375 
376  /// \brief An implementation that throws NotImplemented
377  void GenerateBlock(byte *output, size_t size)
378  {
379  CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(size);
380  throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");
381  }
382 
383 #if defined(CRYPTOPP_DOXYGEN_PROCESSING)
384  /// \brief An implementation that throws NotImplemented
385  void GenerateIntoBufferedTransformation (BufferedTransformation &target, const std::string &channel, lword length) {}
386  /// \brief An implementation that throws NotImplemented
387  void IncorporateEntropy (const byte *input, size_t length) {}
388  /// \brief An implementation that returns \p false
389  bool CanIncorporateEntropy () const {}
390  /// \brief An implementation that does nothing
391  void DiscardBytes (size_t n) {}
392  /// \brief An implementation that does nothing
393  void Shuffle (IT begin, IT end) {}
394 
395 private:
396  Clonable* Clone () const { return NULLPTR; }
397 #endif
398 };
399 
401 {
402  static ClassNullRNG s_nullRNG;
403  return s_nullRNG;
404 }
405 
406 bool HashTransformation::TruncatedVerify(const byte *digest, size_t digestLength)
407 {
408  // Allocate at least 1 for calculated to avoid triggering diagnostics
409  ThrowIfInvalidTruncatedSize(digestLength);
410  SecByteBlock calculated(digestLength ? digestLength : 1);
411  TruncatedFinal(calculated, digestLength);
412  return VerifyBufsEqual(calculated, digest, digestLength);
413 }
414 
415 void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
416 {
417  if (size > DigestSize())
418  throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
419 }
420 
422 {
424  return t ? t->GetMaxWaitObjectCount() : 0;
425 }
426 
427 void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
428 {
430  if (t)
431  t->GetWaitObjects(container, callStack); // reduce clutter by not adding to stack here
432 }
433 
434 void BufferedTransformation::Initialize(const NameValuePairs &parameters, int propagation)
435 {
436  CRYPTOPP_UNUSED(propagation);
438  IsolatedInitialize(parameters);
439 }
440 
441 bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
442 {
443  CRYPTOPP_UNUSED(propagation);
445  return IsolatedFlush(hardFlush, blocking);
446 }
447 
448 bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
449 {
450  CRYPTOPP_UNUSED(propagation);
452  return IsolatedMessageSeriesEnd(blocking);
453 }
454 
455 byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
456 {
457  byte* space = NULLPTR;
458  if (channel.empty())
459  space = CreatePutSpace(size);
460  else
461  throw NoChannelSupport(AlgorithmName());
462  return space;
463 }
464 
465 size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking)
466 {
467  size_t size = 0;
468  if (channel.empty())
469  size = Put2(inString, length, messageEnd, blocking);
470  else
471  throw NoChannelSupport(AlgorithmName());
472  return size;
473 }
474 
475 size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *inString, size_t length, int messageEnd, bool blocking)
476 {
477  size_t size = 0;
478  if (channel.empty())
479  size = PutModifiable2(inString, length, messageEnd, blocking);
480  else
481  size = ChannelPut2(channel, inString, length, messageEnd, blocking);
482  return size;
483 }
484 
485 bool BufferedTransformation::ChannelFlush(const std::string &channel, bool hardFlush, int propagation, bool blocking)
486 {
487  bool result = 0;
488  if (channel.empty())
489  result = Flush(hardFlush, propagation, blocking);
490  else
491  throw NoChannelSupport(AlgorithmName());
492  return result;
493 }
494 
495 bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
496 {
497  bool result = false;
498  if (channel.empty())
499  result = MessageSeriesEnd(propagation, blocking);
500  else
501  throw NoChannelSupport(AlgorithmName());
502  return result;
503 }
504 
506 {
507  lword size = 0;
510  else
511  size = CopyTo(TheBitBucket());
512  return size;
513 }
514 
516 {
517  bool result = false;
520  else
521  {
522  byte b;
523  result = Peek(b) != 0;
524  }
525  return result;
526 }
527 
528 size_t BufferedTransformation::Get(byte &outByte)
529 {
530  size_t size = 0;
532  size = AttachedTransformation()->Get(outByte);
533  else
534  size = Get(&outByte, 1);
535  return size;
536 }
537 
538 size_t BufferedTransformation::Get(byte *outString, size_t getMax)
539 {
540  size_t size = 0;
542  size = AttachedTransformation()->Get(outString, getMax);
543  else
544  {
545  ArraySink arraySink(outString, getMax);
546  size = (size_t)TransferTo(arraySink, getMax);
547  }
548  return size;
549 }
550 
551 size_t BufferedTransformation::Peek(byte &outByte) const
552 {
553  size_t size = 0;
555  size = AttachedTransformation()->Peek(outByte);
556  else
557  size = Peek(&outByte, 1);
558  return size;
559 }
560 
561 size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
562 {
563  size_t size = 0;
565  size = AttachedTransformation()->Peek(outString, peekMax);
566  else
567  {
568  ArraySink arraySink(outString, peekMax);
569  size = (size_t)CopyTo(arraySink, peekMax);
570  }
571  return size;
572 }
573 
575 {
576  lword size = 0;
578  size = AttachedTransformation()->Skip(skipMax);
579  else
580  size = TransferTo(TheBitBucket(), skipMax);
581  return size;
582 }
583 
585 {
586  lword size = 0;
589  else
590  size = MaxRetrievable();
591  return size;
592 }
593 
594 unsigned int BufferedTransformation::NumberOfMessages() const
595 {
596  unsigned int size = 0;
599  else
600  size = CopyMessagesTo(TheBitBucket());
601  return size;
602 }
603 
605 {
606  bool result = false;
608  result = AttachedTransformation()->AnyMessages();
609  else
610  result = NumberOfMessages() != 0;
611  return result;
612 }
613 
615 {
616  bool result = false;
619  else
620  {
622  }
623  return result;
624 }
625 
626 unsigned int BufferedTransformation::SkipMessages(unsigned int count)
627 {
628  unsigned int size = 0;
630  size = AttachedTransformation()->SkipMessages(count);
631  else
632  size = TransferMessagesTo(TheBitBucket(), count);
633  return size;
634 }
635 
636 size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
637 {
639  return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
640  else
641  {
642  unsigned int maxMessages = messageCount;
643  for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
644  {
645  size_t blockedBytes;
646  lword transferredBytes;
647 
648  while (AnyRetrievable())
649  {
650  // MaxRetrievable() instead of LWORD_MAX due to GH #962. If
651  // the target calls CreatePutSpace(), then the allocation
652  // size will be LWORD_MAX. That happens when target is a
653  // ByteQueue. Maybe ByteQueue should check the size, and if
654  // it is LWORD_MAX or -1, then use a default like 4096.
655  transferredBytes = MaxRetrievable();
656  blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
657  if (blockedBytes > 0)
658  return blockedBytes;
659  }
660 
661  if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
662  return 1;
663 
664  bool result = GetNextMessage();
665  CRYPTOPP_UNUSED(result); CRYPTOPP_ASSERT(result);
666  }
667  return 0;
668  }
669 }
670 
671 unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
672 {
673  unsigned int size = 0;
675  size = AttachedTransformation()->CopyMessagesTo(target, count, channel);
676  return size;
677 }
678 
680 {
683  else
684  {
685  while (SkipMessages()) {}
686  while (Skip()) {}
687  }
688 }
689 
690 size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
691 {
693  return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
694  else
695  {
697 
698  unsigned int messageCount;
699  do
700  {
701  messageCount = UINT_MAX;
702  size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
703  if (blockedBytes)
704  return blockedBytes;
705  }
706  while (messageCount != 0);
707 
708  lword byteCount;
709  do
710  {
711  byteCount = ULONG_MAX;
712  size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
713  if (blockedBytes)
714  return blockedBytes;
715  }
716  while (byteCount != 0);
717 
718  return 0;
719  }
720 }
721 
722 void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
723 {
725  AttachedTransformation()->CopyAllTo(target, channel);
726  else
727  {
729  while (CopyMessagesTo(target, UINT_MAX, channel)) {}
730  }
731 }
732 
733 void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
734 {
737 }
738 
739 size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
740 {
741  PutWord(false, order, m_buf, value);
742  return ChannelPut(channel, m_buf, 2, blocking);
743 }
744 
745 size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
746 {
747  PutWord(false, order, m_buf, value);
748  return ChannelPut(channel, m_buf, 4, blocking);
749 }
750 
751 size_t BufferedTransformation::ChannelPutWord64(const std::string &channel, word64 value, ByteOrder order, bool blocking)
752 {
753  PutWord(false, order, m_buf, value);
754  return ChannelPut(channel, m_buf, 8, blocking);
755 }
756 
757 size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
758 {
759  return ChannelPutWord16(DEFAULT_CHANNEL, value, order, blocking);
760 }
761 
762 size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
763 {
764  return ChannelPutWord32(DEFAULT_CHANNEL, value, order, blocking);
765 }
766 
767 size_t BufferedTransformation::PutWord64(word64 value, ByteOrder order, bool blocking)
768 {
769  return ChannelPutWord64(DEFAULT_CHANNEL, value, order, blocking);
770 }
771 
772 size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
773 {
774  byte buf[2] = {0, 0};
775  size_t len = Peek(buf, 2);
776 
777  if (order == BIG_ENDIAN_ORDER)
778  value = word16((buf[0] << 8) | buf[1]);
779  else
780  value = word16((buf[1] << 8) | buf[0]);
781 
782  return len;
783 }
784 
785 size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
786 {
787  byte buf[4] = {0, 0, 0, 0};
788  size_t len = Peek(buf, 4);
789 
790  if (order == BIG_ENDIAN_ORDER)
791  value = word32((buf[0] << 24) | (buf[1] << 16) |
792  (buf[2] << 8) | (buf[3] << 0));
793  else
794  value = word32((buf[3] << 24) | (buf[2] << 16) |
795  (buf[1] << 8) | (buf[0] << 0));
796 
797  return len;
798 }
799 
800 size_t BufferedTransformation::PeekWord64(word64 &value, ByteOrder order) const
801 {
802  byte buf[8] = {0, 0, 0, 0, 0, 0, 0, 0};
803  size_t len = Peek(buf, 8);
804 
805  if (order == BIG_ENDIAN_ORDER)
806  value = ((word64)buf[0] << 56) | ((word64)buf[1] << 48) | ((word64)buf[2] << 40) |
807  ((word64)buf[3] << 32) | ((word64)buf[4] << 24) | ((word64)buf[5] << 16) |
808  ((word64)buf[6] << 8) | (word64)buf[7];
809  else
810  value = ((word64)buf[7] << 56) | ((word64)buf[6] << 48) | ((word64)buf[5] << 40) |
811  ((word64)buf[4] << 32) | ((word64)buf[3] << 24) | ((word64)buf[2] << 16) |
812  ((word64)buf[1] << 8) | (word64)buf[0];
813 
814  return len;
815 }
816 
818 {
819  return (size_t)Skip(PeekWord16(value, order));
820 }
821 
823 {
824  return (size_t)Skip(PeekWord32(value, order));
825 }
826 
828 {
829  return (size_t)Skip(PeekWord64(value, order));
830 }
831 
833 {
835  AttachedTransformation()->Attach(newAttachment);
836  else
837  Detach(newAttachment);
838 }
839 
841 {
842  GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
843 }
844 
845 class PK_DefaultEncryptionFilter : public Unflushable<Filter>
846 {
847 public:
848  PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
849  : m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
850  {
851  Detach(attachment);
852  }
853 
854  size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
855  {
856  FILTER_BEGIN;
857  m_plaintextQueue.Put(inString, length);
858 
859  if (messageEnd)
860  {
861  {
862  size_t plaintextLength;
863  if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
864  throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
865  size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
866 
867  SecByteBlock plaintext(plaintextLength);
868  m_plaintextQueue.Get(plaintext, plaintextLength);
869  m_ciphertext.resize(ciphertextLength);
870  m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
871  }
872 
873  FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
874  }
875  FILTER_END_NO_MESSAGE_END;
876  }
877 
878  RandomNumberGenerator &m_rng;
879  const PK_Encryptor &m_encryptor;
880  const NameValuePairs &m_parameters;
881  ByteQueue m_plaintextQueue;
882  SecByteBlock m_ciphertext;
883 };
884 
886 {
887  return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
888 }
889 
890 class PK_DefaultDecryptionFilter : public Unflushable<Filter>
891 {
892 public:
893  PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
894  : m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
895  {
896  Detach(attachment);
897  }
898 
899  size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
900  {
901  FILTER_BEGIN;
902  m_ciphertextQueue.Put(inString, length);
903 
904  if (messageEnd)
905  {
906  {
907  size_t ciphertextLength;
908  if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
909  throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
910  size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
911 
912  SecByteBlock ciphertext(ciphertextLength);
913  m_ciphertextQueue.Get(ciphertext, ciphertextLength);
914  m_plaintext.resize(maxPlaintextLength);
915  m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
916  if (!m_result.isValidCoding)
917  throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
918  }
919 
920  FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
921  }
922  FILTER_END_NO_MESSAGE_END;
923  }
924 
925  RandomNumberGenerator &m_rng;
926  const PK_Decryptor &m_decryptor;
927  const NameValuePairs &m_parameters;
928  ByteQueue m_ciphertextQueue;
929  SecByteBlock m_plaintext;
930  DecodingResult m_result;
931 };
932 
934 {
935  return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
936 }
937 
938 size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
939 {
940  member_ptr<PK_MessageAccumulator> m(messageAccumulator);
941  return SignAndRestart(rng, *m, signature, false);
942 }
943 
944 size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
945 {
947  m->Update(message, messageLen);
948  return SignAndRestart(rng, *m, signature, false);
949 }
950 
951 size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
952  const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
953 {
955  InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
956  m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
957  return SignAndRestart(rng, *m, signature, false);
958 }
959 
960 bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
961 {
962  member_ptr<PK_MessageAccumulator> m(messageAccumulator);
963  return VerifyAndRestart(*m);
964 }
965 
966 bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLen) const
967 {
969  InputSignature(*m, signature, signatureLen);
970  m->Update(message, messageLen);
971  return VerifyAndRestart(*m);
972 }
973 
974 DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
975 {
976  member_ptr<PK_MessageAccumulator> m(messageAccumulator);
977  return RecoverAndRestart(recoveredMessage, *m);
978 }
979 
980 DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage,
981  const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
982  const byte *signature, size_t signatureLength) const
983 {
985  InputSignature(*m, signature, signatureLength);
986  m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
987  return RecoverAndRestart(recoveredMessage, *m);
988 }
989 
990 void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
991 {
992  GeneratePrivateKey(rng, privateKey);
993  GeneratePublicKey(rng, privateKey, publicKey);
994 }
995 
996 void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
997 {
998  GenerateStaticPrivateKey(rng, privateKey);
999  GenerateStaticPublicKey(rng, privateKey, publicKey);
1000 }
1001 
1002 void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
1003 {
1004  GenerateEphemeralPrivateKey(rng, privateKey);
1005  GenerateEphemeralPublicKey(rng, privateKey, publicKey);
1006 }
1007 
1008 // Allow a distro or packager to override the build-time version
1009 // http://github.com/weidai11/cryptopp/issues/371
1010 #ifndef CRYPTOPP_BUILD_VERSION
1011 # define CRYPTOPP_BUILD_VERSION CRYPTOPP_VERSION
1012 #endif
1013 int LibraryVersion(CRYPTOPP_NOINLINE_DOTDOTDOT)
1014 {
1015  return CRYPTOPP_BUILD_VERSION;
1016 }
1017 
1018 class NullNameValuePairs : public NameValuePairs
1019 {
1020 public:
1021  NullNameValuePairs() {} // Clang complains a default ctor must be available
1022  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
1023  {CRYPTOPP_UNUSED(name); CRYPTOPP_UNUSED(valueType); CRYPTOPP_UNUSED(pValue); return false;}
1024 };
1025 
1026 #if HAVE_GCC_INIT_PRIORITY
1027  const std::string DEFAULT_CHANNEL __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 25))) = "";
1028  const std::string AAD_CHANNEL __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 26))) = "AAD";
1029  const NullNameValuePairs s_nullNameValuePairs __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 27)));
1030  const NameValuePairs& g_nullNameValuePairs = s_nullNameValuePairs;
1031 #elif HAVE_MSC_INIT_PRIORITY
1032  #pragma warning(disable: 4073)
1033  #pragma init_seg(lib)
1034  const std::string DEFAULT_CHANNEL = "";
1035  const std::string AAD_CHANNEL = "AAD";
1036  const NullNameValuePairs s_nullNameValuePairs;
1037  const NameValuePairs& g_nullNameValuePairs = s_nullNameValuePairs;
1038  #pragma warning(default: 4073)
1039 #elif HAVE_XLC_INIT_PRIORITY
1040  #pragma priority(260)
1041  const std::string DEFAULT_CHANNEL = "";
1042  const std::string AAD_CHANNEL = "AAD";
1043  const NullNameValuePairs s_nullNameValuePairs;
1044  const NameValuePairs& g_nullNameValuePairs = s_nullNameValuePairs;
1045 #else
1046  const std::string DEFAULT_CHANNEL = "";
1047  const std::string AAD_CHANNEL = "AAD";
1048  const simple_ptr<NullNameValuePairs> s_pNullNameValuePairs(new NullNameValuePairs);
1049  const NameValuePairs &g_nullNameValuePairs = *s_pNullNameValuePairs.m_p;
1050 #endif
1051 
1052 NAMESPACE_END // CryptoPP
1053 
1054 #endif // CRYPTOPP_IMPORTS
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Definition: algparam.h:508
Standard names for retrieving values by name when working with NameValuePairs.
Algorithm(bool checkSelfTestStatus=true)
Interface for all crypto algorithms.
virtual std::string AlgorithmName() const
Provides the name of this algorithm.
Definition: cryptlib.h:624
Copy input to a memory buffer.
Definition: filters.h:1200
virtual void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0
Generate static private key in this domain.
virtual void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0
Generate a static public key from a private key in this domain.
virtual void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0
Generate ephemeral public key.
virtual void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0
Generate ephemeral private key.
virtual void GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
Generate a static private/public key pair.
virtual void GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
Generate private/public key pair.
virtual lword MaxHeaderLength() const =0
Provides the maximum length of AAD that can be input.
virtual lword MaxFooterLength() const
Provides the maximum length of AAD.
Definition: cryptlib.h:1350
virtual void EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength)
Encrypts and calculates a MAC in one call.
void SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength=0)
Prescribes the data lengths.
virtual lword MaxMessageLength() const =0
Provides the maximum length of encrypted data.
virtual bool DecryptAndVerify(byte *message, const byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength)
Decrypts and verifies a MAC in one call.
virtual std::string AlgorithmName() const
Provides the name of this algorithm.
Acts as an input discarding Filter or Sink.
Definition: simple.h:491
virtual void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const =0
Encrypt or decrypt a block.
void ProcessBlock(const byte *inBlock, byte *outBlock) const
Encrypt or decrypt a block.
Definition: cryptlib.h:884
virtual size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const
Encrypt and xor multiple blocks using additional flags.
@ BT_InBlockIsCounter
inBlock is a counter
Definition: cryptlib.h:922
@ BT_ReverseDirection
perform the transformation in reverse
Definition: cryptlib.h:928
@ BT_XorInput
Xor inputs before transformation.
Definition: cryptlib.h:926
@ BT_DontIncrementInOutPointers
should not modify block pointers
Definition: cryptlib.h:924
virtual unsigned int BlockSize() const =0
Provides the block size of the cipher.
virtual unsigned int OptimalDataAlignment() const
Provides input and output data alignment for optimal performance.
Interface for buffered transformations.
Definition: cryptlib.h:1657
virtual bool AnyRetrievable() const
Determines whether bytes are ready for retrieval.
virtual bool AnyMessages() const
Determines if any messages are available for retrieval.
unsigned int TransferMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL)
Transfer messages from this object to another BufferedTransformation.
Definition: cryptlib.h:2076
unsigned int GetMaxWaitObjectCount() const
Retrieves the maximum number of waitable objects.
size_t ChannelPutWord64(const std::string &channel, word64 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true)
Input a 64-bit word for processing on a channel.
virtual void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1)
Initialize or reinitialize this object, with signal propagation.
void GetWaitObjects(WaitObjectContainer &container, CallStack const &callStack)
Retrieves waitable objects.
virtual unsigned int SkipMessages(unsigned int count=UINT_MAX)
Skip a number of meessages.
void CopyAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL) const
Copy messages from this object to another BufferedTransformation.
virtual size_t Get(byte &outByte)
Retrieve a 8-bit byte.
size_t TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true)
Transfer messages from this object to another BufferedTransformation.
size_t GetWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER)
Retrieve a 16-bit word.
virtual bool Attachable()
Determines whether the object allows attachment.
Definition: cryptlib.h:2340
virtual unsigned int NumberOfMessages() const
Provides the number of meesages processed by this object.
virtual size_t TransferTo2(BufferedTransformation &target, lword &byteCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true)=0
Transfer bytes from this object to another BufferedTransformation.
virtual void SetRetrievalChannel(const std::string &channel)
Sets the default retrieval channel.
virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true)
Flush buffered input and/or output on a channel.
unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const
Copy messages from this object to another BufferedTransformation.
virtual size_t Peek(byte &outByte) const
Peek a 8-bit byte.
size_t TransferAllTo2(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true)
Transfer all bytes from this object to another BufferedTransformation.
size_t PeekWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER) const
Peek a 16-bit word.
virtual void Attach(BufferedTransformation *newAttachment)
Add newAttachment to the end of attachment chain.
size_t PeekWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER) const
Peek a 32-bit word.
size_t PutWord64(word64 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true)
Input a 64-bit word for processing.
virtual size_t ChannelPutModifiable2(const std::string &channel, byte *inString, size_t length, int messageEnd, bool blocking)
Input multiple bytes that may be modified by callee on a channel.
virtual bool IsolatedFlush(bool hardFlush, bool blocking)=0
Flushes data buffered by this object, without signal propagation.
size_t GetWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER)
Retrieve a 32-bit word.
lword CopyTo(BufferedTransformation &target, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
Copy bytes from this object to another BufferedTransformation.
Definition: cryptlib.h:2018
virtual int GetAutoSignalPropagation() const
Retrieve automatic signal propagation value.
Definition: cryptlib.h:1892
virtual size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
Input multiple bytes that may be modified by callee.
Definition: cryptlib.h:1783
virtual void IsolatedInitialize(const NameValuePairs &parameters)
Initialize or reinitialize this object, without signal propagation.
Definition: cryptlib.h:1821
virtual byte * ChannelCreatePutSpace(const std::string &channel, size_t &size)
Request space which can be written into by the caller.
virtual size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking)
Input multiple bytes for processing on a channel.
virtual void SkipAll()
Skip all messages in the series.
size_t PutWord16(word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true)
Input a 16-bit word for processing.
size_t ChannelPut(const std::string &channel, byte inByte, bool blocking=true)
Input a byte for processing on a channel.
Definition: cryptlib.h:2199
virtual bool MessageSeriesEnd(int propagation=-1, bool blocking=true)
Marks the end of a series of messages, with signal propagation.
size_t ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true)
Input a 16-bit word for processing on a channel.
virtual bool GetNextMessage()
Start retrieving the next message.
virtual bool IsolatedMessageSeriesEnd(bool blocking)
Marks the end of a series of messages, without signal propagation.
Definition: cryptlib.h:1837
virtual BufferedTransformation * AttachedTransformation()
Returns the object immediately attached to this object.
Definition: cryptlib.h:2346
lword TransferTo(BufferedTransformation &target, lword transferMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL)
move transferMax bytes of the buffered output to target as input
Definition: cryptlib.h:1996
virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true)
Flush buffered input and/or output, with signal propagation.
virtual void Detach(BufferedTransformation *newAttachment=NULL)
Delete the current attachment chain and attach a new one.
Definition: cryptlib.h:2361
virtual bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true)
Marks the end of a series of messages on a channel.
virtual lword TotalBytesRetrievable() const
Provides the number of bytes ready for retrieval.
size_t ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true)
Input a 32-bit word for processing on a channel.
virtual unsigned int NumberOfMessageSeries() const
Provides the number of messages in a series.
Definition: cryptlib.h:2116
virtual size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)=0
Input multiple bytes for processing.
size_t GetWord64(word64 &value, ByteOrder order=BIG_ENDIAN_ORDER)
Retrieve a 64-bit word.
bool ChannelMessageEnd(const std::string &channel, int propagation=-1, bool blocking=true)
Signal the end of a message.
Definition: cryptlib.h:2257
size_t PeekWord64(word64 &value, ByteOrder order=BIG_ENDIAN_ORDER) const
Peek a 64-bit word.
virtual lword Skip(lword skipMax=LWORD_MAX)
Discard skipMax bytes from the output buffer.
virtual byte * CreatePutSpace(size_t &size)
Request space which can be written into by the caller.
Definition: cryptlib.h:1725
virtual lword MaxRetrievable() const
Provides the number of bytes ready for retrieval.
size_t PutWord32(word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true)
Input a 32-bit word for processing.
Data structure used to store byte strings.
Definition: queue.h:23
Interface for cloning objects.
Definition: cryptlib.h:590
virtual Clonable * Clone() const
Copies this object.
Definition: cryptlib.h:599
Used to pass byte array input as part of a NameValuePairs object.
Definition: algparam.h:25
size_t size() const
Length of the memory block.
Definition: algparam.h:88
const byte * begin() const
Pointer to the first byte in the memory block.
Definition: algparam.h:84
void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
Generate a random key or crypto parameters.
virtual void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params=g_nullNameValuePairs)
Generate a random key or crypto parameters.
Definition: cryptlib.h:2525
virtual unsigned int OptimalDataAlignment() const
Provides input and output data alignment for optimal performance.
virtual void TruncatedFinal(byte *digest, size_t digestSize)=0
Computes the hash of the current message.
virtual unsigned int DigestSize() const =0
Provides the digest size of the hash.
virtual void Update(const byte *input, size_t length)=0
Updates a hash with additional input.
virtual bool TruncatedVerify(const byte *digest, size_t digestLength)
Verifies the hash of the current message.
An invalid argument was detected.
Definition: cryptlib.h:208
A decryption filter encountered invalid ciphertext.
Definition: cryptlib.h:228
Exception thrown when an invalid derived key length is encountered.
Definition: simple.h:86
Exception thrown when an invalid key length is encountered.
Definition: simple.h:56
virtual size_t MinDerivedKeyLength() const
Determine minimum number of bytes.
virtual void SetParameters(const NameValuePairs &params)
Set or change parameters.
virtual size_t MaxDerivedKeyLength() const
Determine maximum number of bytes.
virtual bool IsValidDerivedLength(size_t keylength) const
Returns whether keylength is a valid key length.
Definition: cryptlib.h:1553
virtual std::string AlgorithmName() const =0
Provides the name of this algorithm.
Thrown when an unexpected type is encountered.
Definition: cryptlib.h:335
Interface for retrieving values given their names.
Definition: cryptlib.h:327
virtual CRYPTOPP_DLL bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const =0
Get a named value.
bool GetValue(const char *name, T &value) const
Get a named value.
Definition: cryptlib.h:384
A method was called which was not implemented.
Definition: cryptlib.h:238
Interface for public-key decryptors.
Definition: cryptlib.h:2738
virtual BufferedTransformation * CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment=NULL, const NameValuePairs &parameters=g_nullNameValuePairs) const
Create a new decryption filter.
Interface for public-key encryptors.
Definition: cryptlib.h:2703
virtual BufferedTransformation * CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment=NULL, const NameValuePairs &parameters=g_nullNameValuePairs) const
Create a new encryption filter.
Interface for accumulating messages to be signed or verified.
Definition: cryptlib.h:2866
virtual size_t SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength, const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
Sign a recoverable message.
virtual void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const =0
Input a recoverable message to an accumulator.
virtual size_t Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
Sign and delete the messageAccumulator.
virtual size_t SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
Sign a message.
virtual size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const =0
Sign and restart messageAccumulator.
virtual PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const =0
Create a new HashTransformation to accumulate the message to be signed.
virtual bool VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLen) const
Check whether input signature is a valid signature for input message.
virtual DecodingResult RecoverMessage(byte *recoveredMessage, const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, const byte *signature, size_t signatureLength) const
Recover a message from its signature.
virtual bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const =0
Check whether messageAccumulator contains a valid signature and message, and restart messageAccumulat...
virtual void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const =0
Input signature into a message accumulator.
virtual DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const =0
Recover a message from its signature.
virtual DecodingResult Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
Recover a message from its signature.
virtual PK_MessageAccumulator * NewVerificationAccumulator() const =0
Create a new HashTransformation to accumulate the message to be verified.
virtual bool Verify(PK_MessageAccumulator *messageAccumulator) const
Check whether messageAccumulator contains a valid signature and message.
Interface for random number generators.
Definition: cryptlib.h:1440
virtual void DiscardBytes(size_t n)
Generate and discard n bytes.
virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL)
Generate a random 32 bit word in the range min to max, inclusive.
virtual byte GenerateByte()
Generate new random byte and return it.
virtual void IncorporateEntropy(const byte *input, size_t length)
Update RNG state with additional unpredictable values.
Definition: cryptlib.h:1452
virtual bool CanIncorporateEntropy() const
Determines if a generator can accept additional entropy.
Definition: cryptlib.h:1460
virtual void GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
Generate random bytes into a BufferedTransformation.
virtual unsigned int GenerateBit()
Generate new random bit and return it.
virtual void GenerateBlock(byte *output, size_t size)
Generate random array of bytes.
void Shuffle(IT begin, IT end)
Randomly shuffle the specified array.
Definition: cryptlib.h:1515
size_type size() const
Provides the count of elements in the SecBlock.
Definition: secblock.h:867
SecBlock<byte> typedef.
Definition: secblock.h:1226
Exception thrown when a crypto algorithm is used after a self test fails.
Definition: fips140.h:23
virtual void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0
Generate a public key from a private key in this domain.
virtual void GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
Generate a private/public key pair.
virtual void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0
Generate private key in this domain.
void SetKeyWithRounds(const byte *key, size_t length, int rounds)
Sets or reset the key of this object.
virtual void GetNextIV(RandomNumberGenerator &rng, byte *iv)
Retrieves a secure IV for the next message.
virtual bool IsValidKeyLength(size_t keylength) const
Returns whether keylength is a valid key length.
Definition: cryptlib.h:677
void SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength)
Sets or reset the key of this object.
bool IsResynchronizable() const
Determines if the object can be resynchronized.
Definition: cryptlib.h:745
virtual IV_Requirement IVRequirement() const =0
Minimal requirement for secure IVs.
@ UNPREDICTABLE_RANDOM_IV
The IV must be random and unpredictable.
Definition: cryptlib.h:730
virtual unsigned int MaxIVLength() const
Provides the maximum size of an IV.
Definition: cryptlib.h:781
virtual void SetKey(const byte *key, size_t length, const NameValuePairs &params=g_nullNameValuePairs)
Sets or reset the key of this object.
virtual unsigned int MinIVLength() const
Provides the minimum size of an IV.
Definition: cryptlib.h:776
virtual unsigned int IVSize() const
Returns length of the IV accepted by this object.
Definition: cryptlib.h:766
virtual void Resynchronize(const byte *iv, int ivLength=-1)
Resynchronize with an IV.
Definition: cryptlib.h:788
virtual unsigned int MinLastBlockSize() const
Provides the size of the last block.
Definition: cryptlib.h:1026
virtual void ProcessData(byte *outString, const byte *inString, size_t length)=0
Encrypt or decrypt an array of bytes.
virtual size_t ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
Encrypt or decrypt the last block of data.
virtual unsigned int OptimalDataAlignment() const
Provides input and output data alignment for optimal performance.
void ProcessString(byte *inoutString, size_t length)
Encrypt or decrypt a string of bytes.
Definition: cryptlib.h:1065
virtual unsigned int MandatoryBlockSize() const
Provides the mandatory block size of the cipher.
Definition: cryptlib.h:970
Base class for unflushable filters.
Definition: simple.h:134
Manages resources for a single object.
Definition: smartptr.h:19
Library configuration file.
word64 word
Full word used for multiprecision integer arithmetic.
Definition: config_int.h:192
unsigned int word32
32-bit unsigned datatype
Definition: config_int.h:72
unsigned short word16
16-bit unsigned datatype
Definition: config_int.h:69
word128 dword
Double word used for multiprecision integer arithmetic.
Definition: config_int.h:203
unsigned long long word64
64-bit unsigned datatype
Definition: config_int.h:101
word64 lword
Large word type.
Definition: config_int.h:168
Abstract base classes that provide a uniform interface to this library.
int LibraryVersion(...)
Specifies the build-time version of the library.
const std::string DEFAULT_CHANNEL
Default channel for BufferedTransformation.
Definition: cryptlib.h:516
const NameValuePairs & g_nullNameValuePairs
An empty set of name-value pairs.
Definition: cryptlib.h:534
ByteOrder
Provides the byte ordering.
Definition: cryptlib.h:148
@ BIG_ENDIAN_ORDER
byte order is big-endian
Definition: cryptlib.h:152
CRYPTOPP_DLL BufferedTransformation & TheBitBucket()
An input discarding BufferedTransformation.
CRYPTOPP_DLL RandomNumberGenerator & NullRNG()
Random Number Generator that does not produce random numbers.
const std::string AAD_CHANNEL
Channel for additional authenticated data.
Definition: cryptlib.h:525
Implementation of BufferedTransformation's attachment interface.
Classes and functions for the FIPS 140-2 validated library.
CRYPTOPP_DLL bool FIPS_140_2_ComplianceEnabled()
Determines whether the library provides FIPS validated cryptography.
CRYPTOPP_DLL PowerUpSelfTestStatus GetPowerUpSelfTestStatus()
Provides the current power-up self test status.
@ POWER_UP_SELF_TEST_NOT_DONE
The self tests have not been performed.
Definition: fips140.h:40
@ POWER_UP_SELF_TEST_FAILED
The self tests were executed via DoPowerUpSelfTest() or DoDllPowerUpSelfTest(), but the result was fa...
Definition: fips140.h:43
Utility functions for the Crypto++ library.
unsigned int BitPrecision(const T &value)
Returns the number of bits required for a value.
Definition: misc.h:1047
T Crop(T value, size_t bits)
Truncates the value to the specified number of bits.
Definition: misc.h:1131
#define CRYPTOPP_COMPILE_ASSERT(expr)
Compile time assertion.
Definition: misc.h:153
std::string IntToString(T value, unsigned int base=10)
Converts a value to a string.
Definition: misc.h:929
bool SafeConvert(T1 from, T2 &to)
Perform a conversion from from to to.
Definition: misc.h:718
PTR PtrAdd(PTR pointer, OFF offset)
Create a pointer with an offset.
Definition: misc.h:388
const T1 UnsignedMin(const T1 &a, const T2 &b)
Safe comparison of values that could be negative and incorrectly promoted.
Definition: misc.h:695
void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock=NULL)
Access a block of memory.
Definition: misc.h:2948
CRYPTOPP_DLL bool VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count)
Performs a near constant-time comparison of two equally sized buffers.
CRYPTOPP_DLL void xorbuf(byte *buf, const byte *mask, size_t count)
Performs an XOR of a buffer with a mask.
Crypto++ library namespace.
const char * IV()
ConstByteArrayParameter, also accepts const byte * for backwards compatibility.
Definition: argnames.h:21
const char * Rounds()
int
Definition: argnames.h:24
Classes for access to the operating system's random number generators.
Precompiled header file.
Classes and functions for secure memory allocations.
Classes for automatic resource management.
Common C++ header files.
Returns a decoding results.
Definition: cryptlib.h:283
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68