• Main Page
  • Namespaces
  • Classes
  • Files
  • File List
  • File Members

nbtheory.cpp

00001 // nbtheory.cpp - written and placed in the public domain by Wei Dai
00002 
00003 #include "pch.h"
00004 
00005 #ifndef CRYPTOPP_IMPORTS
00006 
00007 #include "nbtheory.h"
00008 #include "modarith.h"
00009 #include "algparam.h"
00010 
00011 #include <math.h>
00012 #include <vector>
00013 
00014 #ifdef _OPENMP
00015 // needed in MSVC 2005 to generate correct manifest
00016 #include <omp.h>
00017 #endif
00018 
00019 NAMESPACE_BEGIN(CryptoPP)
00020 
00021 const word s_lastSmallPrime = 32719;
00022 
00023 struct NewPrimeTable
00024 {
00025         std::vector<word16> * operator()() const
00026         {
00027                 const unsigned int maxPrimeTableSize = 3511;
00028 
00029                 std::auto_ptr<std::vector<word16> > pPrimeTable(new std::vector<word16>);
00030                 std::vector<word16> &primeTable = *pPrimeTable;
00031                 primeTable.reserve(maxPrimeTableSize);
00032 
00033                 primeTable.push_back(2);
00034                 unsigned int testEntriesEnd = 1;
00035                 
00036                 for (unsigned int p=3; p<=s_lastSmallPrime; p+=2)
00037                 {
00038                         unsigned int j;
00039                         for (j=1; j<testEntriesEnd; j++)
00040                                 if (p%primeTable[j] == 0)
00041                                         break;
00042                         if (j == testEntriesEnd)
00043                         {
00044                                 primeTable.push_back(p);
00045                                 testEntriesEnd = UnsignedMin(54U, primeTable.size());
00046                         }
00047                 }
00048 
00049                 return pPrimeTable.release();
00050         }
00051 };
00052 
00053 const word16 * GetPrimeTable(unsigned int &size)
00054 {
00055         const std::vector<word16> &primeTable = Singleton<std::vector<word16>, NewPrimeTable>().Ref();
00056         size = (unsigned int)primeTable.size();
00057         return &primeTable[0];
00058 }
00059 
00060 bool IsSmallPrime(const Integer &p)
00061 {
00062         unsigned int primeTableSize;
00063         const word16 * primeTable = GetPrimeTable(primeTableSize);
00064 
00065         if (p.IsPositive() && p <= primeTable[primeTableSize-1])
00066                 return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
00067         else
00068                 return false;
00069 }
00070 
00071 bool TrialDivision(const Integer &p, unsigned bound)
00072 {
00073         unsigned int primeTableSize;
00074         const word16 * primeTable = GetPrimeTable(primeTableSize);
00075 
00076         assert(primeTable[primeTableSize-1] >= bound);
00077 
00078         unsigned int i;
00079         for (i = 0; primeTable[i]<bound; i++)
00080                 if ((p % primeTable[i]) == 0)
00081                         return true;
00082 
00083         if (bound == primeTable[i])
00084                 return (p % bound == 0);
00085         else
00086                 return false;
00087 }
00088 
00089 bool SmallDivisorsTest(const Integer &p)
00090 {
00091         unsigned int primeTableSize;
00092         const word16 * primeTable = GetPrimeTable(primeTableSize);
00093         return !TrialDivision(p, primeTable[primeTableSize-1]);
00094 }
00095 
00096 bool IsFermatProbablePrime(const Integer &n, const Integer &b)
00097 {
00098         if (n <= 3)
00099                 return n==2 || n==3;
00100 
00101         assert(n>3 && b>1 && b<n-1);
00102         return a_exp_b_mod_c(b, n-1, n)==1;
00103 }
00104 
00105 bool IsStrongProbablePrime(const Integer &n, const Integer &b)
00106 {
00107         if (n <= 3)
00108                 return n==2 || n==3;
00109 
00110         assert(n>3 && b>1 && b<n-1);
00111 
00112         if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
00113                 return false;
00114 
00115         Integer nminus1 = (n-1);
00116         unsigned int a;
00117 
00118         // calculate a = largest power of 2 that divides (n-1)
00119         for (a=0; ; a++)
00120                 if (nminus1.GetBit(a))
00121                         break;
00122         Integer m = nminus1>>a;
00123 
00124         Integer z = a_exp_b_mod_c(b, m, n);
00125         if (z==1 || z==nminus1)
00126                 return true;
00127         for (unsigned j=1; j<a; j++)
00128         {
00129                 z = z.Squared()%n;
00130                 if (z==nminus1)
00131                         return true;
00132                 if (z==1)
00133                         return false;
00134         }
00135         return false;
00136 }
00137 
00138 bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
00139 {
00140         if (n <= 3)
00141                 return n==2 || n==3;
00142 
00143         assert(n>3);
00144 
00145         Integer b;
00146         for (unsigned int i=0; i<rounds; i++)
00147         {
00148                 b.Randomize(rng, 2, n-2);
00149                 if (!IsStrongProbablePrime(n, b))
00150                         return false;
00151         }
00152         return true;
00153 }
00154 
00155 bool IsLucasProbablePrime(const Integer &n)
00156 {
00157         if (n <= 1)
00158                 return false;
00159 
00160         if (n.IsEven())
00161                 return n==2;
00162 
00163         assert(n>2);
00164 
00165         Integer b=3;
00166         unsigned int i=0;
00167         int j;
00168 
00169         while ((j=Jacobi(b.Squared()-4, n)) == 1)
00170         {
00171                 if (++i==64 && n.IsSquare())    // avoid infinite loop if n is a square
00172                         return false;
00173                 ++b; ++b;
00174         }
00175 
00176         if (j==0) 
00177                 return false;
00178         else
00179                 return Lucas(n+1, b, n)==2;
00180 }
00181 
00182 bool IsStrongLucasProbablePrime(const Integer &n)
00183 {
00184         if (n <= 1)
00185                 return false;
00186 
00187         if (n.IsEven())
00188                 return n==2;
00189 
00190         assert(n>2);
00191 
00192         Integer b=3;
00193         unsigned int i=0;
00194         int j;
00195 
00196         while ((j=Jacobi(b.Squared()-4, n)) == 1)
00197         {
00198                 if (++i==64 && n.IsSquare())    // avoid infinite loop if n is a square
00199                         return false;
00200                 ++b; ++b;
00201         }
00202 
00203         if (j==0) 
00204                 return false;
00205 
00206         Integer n1 = n+1;
00207         unsigned int a;
00208 
00209         // calculate a = largest power of 2 that divides n1
00210         for (a=0; ; a++)
00211                 if (n1.GetBit(a))
00212                         break;
00213         Integer m = n1>>a;
00214 
00215         Integer z = Lucas(m, b, n);
00216         if (z==2 || z==n-2)
00217                 return true;
00218         for (i=1; i<a; i++)
00219         {
00220                 z = (z.Squared()-2)%n;
00221                 if (z==n-2)
00222                         return true;
00223                 if (z==2)
00224                         return false;
00225         }
00226         return false;
00227 }
00228 
00229 struct NewLastSmallPrimeSquared
00230 {
00231         Integer * operator()() const
00232         {
00233                 return new Integer(Integer(s_lastSmallPrime).Squared());
00234         }
00235 };
00236 
00237 bool IsPrime(const Integer &p)
00238 {
00239         if (p <= s_lastSmallPrime)
00240                 return IsSmallPrime(p);
00241         else if (p <= Singleton<Integer, NewLastSmallPrimeSquared>().Ref())
00242                 return SmallDivisorsTest(p);
00243         else
00244                 return SmallDivisorsTest(p) && IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p);
00245 }
00246 
00247 bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
00248 {
00249         bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
00250         if (level >= 1)
00251                 pass = pass && RabinMillerTest(rng, p, 10);
00252         return pass;
00253 }
00254 
00255 unsigned int PrimeSearchInterval(const Integer &max)
00256 {
00257         return max.BitCount();
00258 }
00259 
00260 static inline bool FastProbablePrimeTest(const Integer &n)
00261 {
00262         return IsStrongProbablePrime(n,2);
00263 }
00264 
00265 AlgorithmParameters MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
00266 {
00267         if (productBitLength < 16)
00268                 throw InvalidArgument("invalid bit length");
00269 
00270         Integer minP, maxP;
00271 
00272         if (productBitLength%2==0)
00273         {
00274                 minP = Integer(182) << (productBitLength/2-8);
00275                 maxP = Integer::Power2(productBitLength/2)-1;
00276         }
00277         else
00278         {
00279                 minP = Integer::Power2((productBitLength-1)/2);
00280                 maxP = Integer(181) << ((productBitLength+1)/2-8);
00281         }
00282 
00283         return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
00284 }
00285 
00286 class PrimeSieve
00287 {
00288 public:
00289         // delta == 1 or -1 means double sieve with p = 2*q + delta
00290         PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
00291         bool NextCandidate(Integer &c);
00292 
00293         void DoSieve();
00294         static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
00295 
00296         Integer m_first, m_last, m_step;
00297         signed int m_delta;
00298         word m_next;
00299         std::vector<bool> m_sieve;
00300 };
00301 
00302 PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
00303         : m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
00304 {
00305         DoSieve();
00306 }
00307 
00308 bool PrimeSieve::NextCandidate(Integer &c)
00309 {
00310         bool safe = SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(), m_next);
00311         assert(safe);
00312         if (m_next == m_sieve.size())
00313         {
00314                 m_first += long(m_sieve.size())*m_step;
00315                 if (m_first > m_last)
00316                         return false;
00317                 else
00318                 {
00319                         m_next = 0;
00320                         DoSieve();
00321                         return NextCandidate(c);
00322                 }
00323         }
00324         else
00325         {
00326                 c = m_first + long(m_next)*m_step;
00327                 ++m_next;
00328                 return true;
00329         }
00330 }
00331 
00332 void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
00333 {
00334         if (stepInv)
00335         {
00336                 size_t sieveSize = sieve.size();
00337                 size_t j = (word32(p-(first%p))*stepInv) % p;
00338                 // if the first multiple of p is p, skip it
00339                 if (first.WordCount() <= 1 && first + step*long(j) == p)
00340                         j += p;
00341                 for (; j < sieveSize; j += p)
00342                         sieve[j] = true;
00343         }
00344 }
00345 
00346 void PrimeSieve::DoSieve()
00347 {
00348         unsigned int primeTableSize;
00349         const word16 * primeTable = GetPrimeTable(primeTableSize);
00350 
00351         const unsigned int maxSieveSize = 32768;
00352         unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
00353 
00354         m_sieve.clear();
00355         m_sieve.resize(sieveSize, false);
00356 
00357         if (m_delta == 0)
00358         {
00359                 for (unsigned int i = 0; i < primeTableSize; ++i)
00360                         SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
00361         }
00362         else
00363         {
00364                 assert(m_step%2==0);
00365                 Integer qFirst = (m_first-m_delta) >> 1;
00366                 Integer halfStep = m_step >> 1;
00367                 for (unsigned int i = 0; i < primeTableSize; ++i)
00368                 {
00369                         word16 p = primeTable[i];
00370                         word16 stepInv = (word16)m_step.InverseMod(p);
00371                         SieveSingle(m_sieve, p, m_first, m_step, stepInv);
00372 
00373                         word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
00374                         SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
00375                 }
00376         }
00377 }
00378 
00379 bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
00380 {
00381         assert(!equiv.IsNegative() && equiv < mod);
00382 
00383         Integer gcd = GCD(equiv, mod);
00384         if (gcd != Integer::One())
00385         {
00386                 // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
00387                 if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
00388                 {
00389                         p = gcd;
00390                         return true;
00391                 }
00392                 else
00393                         return false;
00394         }
00395 
00396         unsigned int primeTableSize;
00397         const word16 * primeTable = GetPrimeTable(primeTableSize);
00398 
00399         if (p <= primeTable[primeTableSize-1])
00400         {
00401                 const word16 *pItr;
00402 
00403                 --p;
00404                 if (p.IsPositive())
00405                         pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
00406                 else
00407                         pItr = primeTable;
00408 
00409                 while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
00410                         ++pItr;
00411 
00412                 if (pItr < primeTable+primeTableSize)
00413                 {
00414                         p = *pItr;
00415                         return p <= max;
00416                 }
00417 
00418                 p = primeTable[primeTableSize-1]+1;
00419         }
00420 
00421         assert(p > primeTable[primeTableSize-1]);
00422 
00423         if (mod.IsOdd())
00424                 return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
00425 
00426         p += (equiv-p)%mod;
00427 
00428         if (p>max)
00429                 return false;
00430 
00431         PrimeSieve sieve(p, max, mod);
00432 
00433         while (sieve.NextCandidate(p))
00434         {
00435                 if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
00436                         return true;
00437         }
00438 
00439         return false;
00440 }
00441 
00442 // the following two functions are based on code and comments provided by Preda Mihailescu
00443 static bool ProvePrime(const Integer &p, const Integer &q)
00444 {
00445         assert(p < q*q*q);
00446         assert(p % q == 1);
00447 
00448 // this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
00449 // for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
00450 // or be prime. The next two lines build the discriminant of a quadratic equation
00451 // which holds iff p is built up of two factors (excercise ... )
00452 
00453         Integer r = (p-1)/q;
00454         if (((r%q).Squared()-4*(r/q)).IsSquare())
00455                 return false;
00456 
00457         unsigned int primeTableSize;
00458         const word16 * primeTable = GetPrimeTable(primeTableSize);
00459 
00460         assert(primeTableSize >= 50);
00461         for (int i=0; i<50; i++) 
00462         {
00463                 Integer b = a_exp_b_mod_c(primeTable[i], r, p);
00464                 if (b != 1) 
00465                         return a_exp_b_mod_c(b, q, p) == 1;
00466         }
00467         return false;
00468 }
00469 
00470 Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
00471 {
00472         Integer p;
00473         Integer minP = Integer::Power2(pbits-1);
00474         Integer maxP = Integer::Power2(pbits) - 1;
00475 
00476         if (maxP <= Integer(s_lastSmallPrime).Squared())
00477         {
00478                 // Randomize() will generate a prime provable by trial division
00479                 p.Randomize(rng, minP, maxP, Integer::PRIME);
00480                 return p;
00481         }
00482 
00483         unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
00484         Integer q = MihailescuProvablePrime(rng, qbits);
00485         Integer q2 = q<<1;
00486 
00487         while (true)
00488         {
00489                 // this initializes the sieve to search in the arithmetic
00490                 // progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
00491                 // with q the recursively generated prime above. We will be able
00492                 // to use Lucas tets for proving primality. A trick of Quisquater
00493                 // allows taking q > cubic_root(p) rather then square_root: this
00494                 // decreases the recursion.
00495 
00496                 p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
00497                 PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
00498 
00499                 while (sieve.NextCandidate(p))
00500                 {
00501                         if (FastProbablePrimeTest(p) && ProvePrime(p, q))
00502                                 return p;
00503                 }
00504         }
00505 
00506         // not reached
00507         return p;
00508 }
00509 
00510 Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
00511 {
00512         const unsigned smallPrimeBound = 29, c_opt=10;
00513         Integer p;
00514 
00515         unsigned int primeTableSize;
00516         const word16 * primeTable = GetPrimeTable(primeTableSize);
00517 
00518         if (bits < smallPrimeBound)
00519         {
00520                 do
00521                         p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
00522                 while (TrialDivision(p, 1 << ((bits+1)/2)));
00523         }
00524         else
00525         {
00526                 const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
00527                 double relativeSize;
00528                 do
00529                         relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
00530                 while (bits * relativeSize >= bits - margin);
00531 
00532                 Integer a,b;
00533                 Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
00534                 Integer I = Integer::Power2(bits-2)/q;
00535                 Integer I2 = I << 1;
00536                 unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
00537                 bool success = false;
00538                 while (!success)
00539                 {
00540                         p.Randomize(rng, I, I2, Integer::ANY);
00541                         p *= q; p <<= 1; ++p;
00542                         if (!TrialDivision(p, trialDivisorBound))
00543                         {
00544                                 a.Randomize(rng, 2, p-1, Integer::ANY);
00545                                 b = a_exp_b_mod_c(a, (p-1)/q, p);
00546                                 success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
00547                         }
00548                 }
00549         }
00550         return p;
00551 }
00552 
00553 Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
00554 {
00555         // isn't operator overloading great?
00556         return p * (u * (xq-xp) % q) + xp;
00557 /*
00558         Integer t1 = xq-xp;
00559         cout << hex << t1 << endl;
00560         Integer t2 = u * t1;
00561         cout << hex << t2 << endl;
00562         Integer t3 = t2 % q;
00563         cout << hex << t3 << endl;
00564         Integer t4 = p * t3;
00565         cout << hex << t4 << endl;
00566         Integer t5 = t4 + xp;
00567         cout << hex << t5 << endl;
00568         return t5;
00569 */
00570 }
00571 
00572 Integer ModularSquareRoot(const Integer &a, const Integer &p)
00573 {
00574         if (p%4 == 3)
00575                 return a_exp_b_mod_c(a, (p+1)/4, p);
00576 
00577         Integer q=p-1;
00578         unsigned int r=0;
00579         while (q.IsEven())
00580         {
00581                 r++;
00582                 q >>= 1;
00583         }
00584 
00585         Integer n=2;
00586         while (Jacobi(n, p) != -1)
00587                 ++n;
00588 
00589         Integer y = a_exp_b_mod_c(n, q, p);
00590         Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
00591         Integer b = (x.Squared()%p)*a%p;
00592         x = a*x%p;
00593         Integer tempb, t;
00594 
00595         while (b != 1)
00596         {
00597                 unsigned m=0;
00598                 tempb = b;
00599                 do
00600                 {
00601                         m++;
00602                         b = b.Squared()%p;
00603                         if (m==r)
00604                                 return Integer::Zero();
00605                 }
00606                 while (b != 1);
00607 
00608                 t = y;
00609                 for (unsigned i=0; i<r-m-1; i++)
00610                         t = t.Squared()%p;
00611                 y = t.Squared()%p;
00612                 r = m;
00613                 x = x*t%p;
00614                 b = tempb*y%p;
00615         }
00616 
00617         assert(x.Squared()%p == a);
00618         return x;
00619 }
00620 
00621 bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
00622 {
00623         Integer D = (b.Squared() - 4*a*c) % p;
00624         switch (Jacobi(D, p))
00625         {
00626         default:
00627                 assert(false);  // not reached
00628                 return false;
00629         case -1:
00630                 return false;
00631         case 0:
00632                 r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
00633                 assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
00634                 return true;
00635         case 1:
00636                 Integer s = ModularSquareRoot(D, p);
00637                 Integer t = (a+a).InverseMod(p);
00638                 r1 = (s-b)*t % p;
00639                 r2 = (-s-b)*t % p;
00640                 assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
00641                 assert(((r2.Squared()*a + r2*b + c) % p).IsZero());
00642                 return true;
00643         }
00644 }
00645 
00646 Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
00647                                         const Integer &p, const Integer &q, const Integer &u)
00648 {
00649         Integer p2, q2;
00650         #pragma omp parallel
00651                 #pragma omp sections
00652                 {
00653                         #pragma omp section
00654                                 p2 = ModularExponentiation((a % p), dp, p);
00655                         #pragma omp section
00656                                 q2 = ModularExponentiation((a % q), dq, q);
00657                 }
00658         return CRT(p2, p, q2, q, u);
00659 }
00660 
00661 Integer ModularRoot(const Integer &a, const Integer &e,
00662                                         const Integer &p, const Integer &q)
00663 {
00664         Integer dp = EuclideanMultiplicativeInverse(e, p-1);
00665         Integer dq = EuclideanMultiplicativeInverse(e, q-1);
00666         Integer u = EuclideanMultiplicativeInverse(p, q);
00667         assert(!!dp && !!dq && !!u);
00668         return ModularRoot(a, dp, dq, p, q, u);
00669 }
00670 
00671 /*
00672 Integer GCDI(const Integer &x, const Integer &y)
00673 {
00674         Integer a=x, b=y;
00675         unsigned k=0;
00676 
00677         assert(!!a && !!b);
00678 
00679         while (a[0]==0 && b[0]==0)
00680         {
00681                 a >>= 1;
00682                 b >>= 1;
00683                 k++;
00684         }
00685 
00686         while (a[0]==0)
00687                 a >>= 1;
00688 
00689         while (b[0]==0)
00690                 b >>= 1;
00691 
00692         while (1)
00693         {
00694                 switch (a.Compare(b))
00695                 {
00696                         case -1:
00697                                 b -= a;
00698                                 while (b[0]==0)
00699                                         b >>= 1;
00700                                 break;
00701 
00702                         case 0:
00703                                 return (a <<= k);
00704 
00705                         case 1:
00706                                 a -= b;
00707                                 while (a[0]==0)
00708                                         a >>= 1;
00709                                 break;
00710 
00711                         default:
00712                                 assert(false);
00713                 }
00714         }
00715 }
00716 
00717 Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
00718 {
00719         assert(b.Positive());
00720 
00721         if (a.Negative())
00722                 return EuclideanMultiplicativeInverse(a%b, b);
00723 
00724         if (b[0]==0)
00725         {
00726                 if (!b || a[0]==0)
00727                         return Integer::Zero();       // no inverse
00728                 if (a==1)
00729                         return 1;
00730                 Integer u = EuclideanMultiplicativeInverse(b, a);
00731                 if (!u)
00732                         return Integer::Zero();       // no inverse
00733                 else
00734                         return (b*(a-u)+1)/a;
00735         }
00736 
00737         Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
00738 
00739         if (a[0])
00740         {
00741                 t1 = Integer::Zero();
00742                 t3 = -b;
00743         }
00744         else
00745         {
00746                 t1 = b2;
00747                 t3 = a>>1;
00748         }
00749 
00750         while (!!t3)
00751         {
00752                 while (t3[0]==0)
00753                 {
00754                         t3 >>= 1;
00755                         if (t1[0]==0)
00756                                 t1 >>= 1;
00757                         else
00758                         {
00759                                 t1 >>= 1;
00760                                 t1 += b2;
00761                         }
00762                 }
00763                 if (t3.Positive())
00764                 {
00765                         u = t1;
00766                         d = t3;
00767                 }
00768                 else
00769                 {
00770                         v1 = b-t1;
00771                         v3 = -t3;
00772                 }
00773                 t1 = u-v1;
00774                 t3 = d-v3;
00775                 if (t1.Negative())
00776                         t1 += b;
00777         }
00778         if (d==1)
00779                 return u;
00780         else
00781                 return Integer::Zero();   // no inverse
00782 }
00783 */
00784 
00785 int Jacobi(const Integer &aIn, const Integer &bIn)
00786 {
00787         assert(bIn.IsOdd());
00788 
00789         Integer b = bIn, a = aIn%bIn;
00790         int result = 1;
00791 
00792         while (!!a)
00793         {
00794                 unsigned i=0;
00795                 while (a.GetBit(i)==0)
00796                         i++;
00797                 a>>=i;
00798 
00799                 if (i%2==1 && (b%8==3 || b%8==5))
00800                         result = -result;
00801 
00802                 if (a%4==3 && b%4==3)
00803                         result = -result;
00804 
00805                 std::swap(a, b);
00806                 a %= b;
00807         }
00808 
00809         return (b==1) ? result : 0;
00810 }
00811 
00812 Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
00813 {
00814         unsigned i = e.BitCount();
00815         if (i==0)
00816                 return Integer::Two();
00817 
00818         MontgomeryRepresentation m(n);
00819         Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
00820         Integer v=p, v1=m.Subtract(m.Square(p), two);
00821 
00822         i--;
00823         while (i--)
00824         {
00825                 if (e.GetBit(i))
00826                 {
00827                         // v = (v*v1 - p) % m;
00828                         v = m.Subtract(m.Multiply(v,v1), p);
00829                         // v1 = (v1*v1 - 2) % m;
00830                         v1 = m.Subtract(m.Square(v1), two);
00831                 }
00832                 else
00833                 {
00834                         // v1 = (v*v1 - p) % m;
00835                         v1 = m.Subtract(m.Multiply(v,v1), p);
00836                         // v = (v*v - 2) % m;
00837                         v = m.Subtract(m.Square(v), two);
00838                 }
00839         }
00840         return m.ConvertOut(v);
00841 }
00842 
00843 // This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
00844 // The total number of multiplies and squares used is less than the binary
00845 // algorithm (see above).  Unfortunately I can't get it to run as fast as
00846 // the binary algorithm because of the extra overhead.
00847 /*
00848 Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
00849 {
00850         if (!n)
00851                 return 2;
00852 
00853 #define f(A, B, C)      m.Subtract(m.Multiply(A, B), C)
00854 #define X2(A) m.Subtract(m.Square(A), two)
00855 #define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
00856 
00857         MontgomeryRepresentation m(modulus);
00858         Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
00859         Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
00860 
00861         while (d!=1)
00862         {
00863                 p = d;
00864                 unsigned int b = WORD_BITS * p.WordCount();
00865                 Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
00866                 r = (p*alpha)>>b;
00867                 e = d-r;
00868                 B = A;
00869                 C = two;
00870                 d = r;
00871 
00872                 while (d!=e)
00873                 {
00874                         if (d<e)
00875                         {
00876                                 swap(d, e);
00877                                 swap(A, B);
00878                         }
00879 
00880                         unsigned int dm2 = d[0], em2 = e[0];
00881                         unsigned int dm3 = d%3, em3 = e%3;
00882 
00883 //                      if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
00884                         if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
00885                         {
00886                                 // #1
00887 //                              t = (d+d-e)/3;
00888 //                              t = d; t += d; t -= e; t /= 3;
00889 //                              e = (e+e-d)/3;
00890 //                              e += e; e -= d; e /= 3;
00891 //                              d = t;
00892 
00893 //                              t = (d+e)/3
00894                                 t = d; t += e; t /= 3;
00895                                 e -= t;
00896                                 d -= t;
00897 
00898                                 T = f(A, B, C);
00899                                 U = f(T, A, B);
00900                                 B = f(T, B, A);
00901                                 A = U;
00902                                 continue;
00903                         }
00904 
00905 //                      if (dm6 == em6 && d <= e + (e>>2))
00906                         if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
00907                         {
00908                                 // #2
00909 //                              d = (d-e)>>1;
00910                                 d -= e; d >>= 1;
00911                                 B = f(A, B, C);
00912                                 A = X2(A);
00913                                 continue;
00914                         }
00915 
00916 //                      if (d <= (e<<2))
00917                         if (d <= (t = e, t <<= 2))
00918                         {
00919                                 // #3
00920                                 d -= e;
00921                                 C = f(A, B, C);
00922                                 swap(B, C);
00923                                 continue;
00924                         }
00925 
00926                         if (dm2 == em2)
00927                         {
00928                                 // #4
00929 //                              d = (d-e)>>1;
00930                                 d -= e; d >>= 1;
00931                                 B = f(A, B, C);
00932                                 A = X2(A);
00933                                 continue;
00934                         }
00935 
00936                         if (dm2 == 0)
00937                         {
00938                                 // #5
00939                                 d >>= 1;
00940                                 C = f(A, C, B);
00941                                 A = X2(A);
00942                                 continue;
00943                         }
00944 
00945                         if (dm3 == 0)
00946                         {
00947                                 // #6
00948 //                              d = d/3 - e;
00949                                 d /= 3; d -= e;
00950                                 T = X2(A);
00951                                 C = f(T, f(A, B, C), C);
00952                                 swap(B, C);
00953                                 A = f(T, A, A);
00954                                 continue;
00955                         }
00956 
00957                         if (dm3+em3==0 || dm3+em3==3)
00958                         {
00959                                 // #7
00960 //                              d = (d-e-e)/3;
00961                                 d -= e; d -= e; d /= 3;
00962                                 T = f(A, B, C);
00963                                 B = f(T, A, B);
00964                                 A = X3(A);
00965                                 continue;
00966                         }
00967 
00968                         if (dm3 == em3)
00969                         {
00970                                 // #8
00971 //                              d = (d-e)/3;
00972                                 d -= e; d /= 3;
00973                                 T = f(A, B, C);
00974                                 C = f(A, C, B);
00975                                 B = T;
00976                                 A = X3(A);
00977                                 continue;
00978                         }
00979 
00980                         assert(em2 == 0);
00981                         // #9
00982                         e >>= 1;
00983                         C = f(C, B, A);
00984                         B = X2(B);
00985                 }
00986 
00987                 A = f(A, B, C);
00988         }
00989 
00990 #undef f
00991 #undef X2
00992 #undef X3
00993 
00994         return m.ConvertOut(A);
00995 }
00996 */
00997 
00998 Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
00999 {
01000         Integer d = (m*m-4);
01001         Integer p2, q2;
01002         #pragma omp parallel
01003                 #pragma omp sections
01004                 {
01005                         #pragma omp section
01006                         {
01007                                 p2 = p-Jacobi(d,p);
01008                                 p2 = Lucas(EuclideanMultiplicativeInverse(e,p2), m, p);
01009                         }
01010                         #pragma omp section
01011                         {
01012                                 q2 = q-Jacobi(d,q);
01013                                 q2 = Lucas(EuclideanMultiplicativeInverse(e,q2), m, q);
01014                         }
01015                 }
01016         return CRT(p2, p, q2, q, u);
01017 }
01018 
01019 unsigned int FactoringWorkFactor(unsigned int n)
01020 {
01021         // extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
01022         // updated to reflect the factoring of RSA-130
01023         if (n<5) return 0;
01024         else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
01025 }
01026 
01027 unsigned int DiscreteLogWorkFactor(unsigned int n)
01028 {
01029         // assuming discrete log takes about the same time as factoring
01030         if (n<5) return 0;
01031         else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
01032 }
01033 
01034 // ********************************************************
01035 
01036 void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
01037 {
01038         // no prime exists for delta = -1, qbits = 4, and pbits = 5
01039         assert(qbits > 4);
01040         assert(pbits > qbits);
01041 
01042         if (qbits+1 == pbits)
01043         {
01044                 Integer minP = Integer::Power2(pbits-1);
01045                 Integer maxP = Integer::Power2(pbits) - 1;
01046                 bool success = false;
01047 
01048                 while (!success)
01049                 {
01050                         p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
01051                         PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
01052 
01053                         while (sieve.NextCandidate(p))
01054                         {
01055                                 assert(IsSmallPrime(p) || SmallDivisorsTest(p));
01056                                 q = (p-delta) >> 1;
01057                                 assert(IsSmallPrime(q) || SmallDivisorsTest(q));
01058                                 if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
01059                                 {
01060                                         success = true;
01061                                         break;
01062                                 }
01063                         }
01064                 }
01065 
01066                 if (delta == 1)
01067                 {
01068                         // find g such that g is a quadratic residue mod p, then g has order q
01069                         // g=4 always works, but this way we get the smallest quadratic residue (other than 1)
01070                         for (g=2; Jacobi(g, p) != 1; ++g) {}
01071                         // contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
01072                         assert((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
01073                 }
01074                 else
01075                 {
01076                         assert(delta == -1);
01077                         // find g such that g*g-4 is a quadratic non-residue, 
01078                         // and such that g has order q
01079                         for (g=3; ; ++g)
01080                                 if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
01081                                         break;
01082                 }
01083         }
01084         else
01085         {
01086                 Integer minQ = Integer::Power2(qbits-1);
01087                 Integer maxQ = Integer::Power2(qbits) - 1;
01088                 Integer minP = Integer::Power2(pbits-1);
01089                 Integer maxP = Integer::Power2(pbits) - 1;
01090 
01091                 do
01092                 {
01093                         q.Randomize(rng, minQ, maxQ, Integer::PRIME);
01094                 } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));
01095 
01096                 // find a random g of order q
01097                 if (delta==1)
01098                 {
01099                         do
01100                         {
01101                                 Integer h(rng, 2, p-2, Integer::ANY);
01102                                 g = a_exp_b_mod_c(h, (p-1)/q, p);
01103                         } while (g <= 1);
01104                         assert(a_exp_b_mod_c(g, q, p)==1);
01105                 }
01106                 else
01107                 {
01108                         assert(delta==-1);
01109                         do
01110                         {
01111                                 Integer h(rng, 3, p-1, Integer::ANY);
01112                                 if (Jacobi(h*h-4, p)==1)
01113                                         continue;
01114                                 g = Lucas((p+1)/q, h, p);
01115                         } while (g <= 2);
01116                         assert(Lucas(q, g, p) == 2);
01117                 }
01118         }
01119 }
01120 
01121 NAMESPACE_END
01122 
01123 #endif

Generated on Mon Aug 9 2010 15:56:35 for Crypto++ by  doxygen 1.7.1