cryptlib.cpp

00001 // cryptlib.cpp - written and placed in the public domain by Wei Dai
00002 
00003 #include "pch.h"
00004 
00005 #ifndef CRYPTOPP_IMPORTS
00006 
00007 #include "cryptlib.h"
00008 #include "misc.h"
00009 #include "filters.h"
00010 #include "algparam.h"
00011 #include "fips140.h"
00012 #include "argnames.h"
00013 #include "fltrimpl.h"
00014 #include "trdlocal.h"
00015 #include "osrng.h"
00016 
00017 #include <memory>
00018 
00019 NAMESPACE_BEGIN(CryptoPP)
00020 
00021 CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
00022 CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
00023 CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
00024 #ifdef WORD64_AVAILABLE
00025 CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
00026 #endif
00027 #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
00028 CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
00029 #endif
00030 
00031 const std::string BufferedTransformation::NULL_CHANNEL;
00032 const NullNameValuePairs g_nullNameValuePairs;
00033 
00034 BufferedTransformation & TheBitBucket()
00035 {
00036         static BitBucket bitBucket;
00037         return bitBucket;
00038 }
00039 
00040 Algorithm::Algorithm(bool checkSelfTestStatus)
00041 {
00042         if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
00043         {
00044                 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
00045                         throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");
00046 
00047                 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
00048                         throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
00049         }
00050 }
00051 
00052 void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs &params)
00053 {
00054         this->ThrowIfInvalidKeyLength(length);
00055         this->UncheckedSetKey(key, (unsigned int)length, params);
00056 }
00057 
00058 void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
00059 {
00060         SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
00061 }
00062 
00063 void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv)
00064 {
00065         SetKey(key, length, MakeParameters(Name::IV(), iv));
00066 }
00067 
00068 void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length)
00069 {
00070         if (!IsValidKeyLength(length))
00071                 throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length);
00072 }
00073 
00074 void SimpleKeyingInterface::ThrowIfResynchronizable()
00075 {
00076         if (IsResynchronizable())
00077                 throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV");
00078 }
00079 
00080 void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
00081 {
00082         if (!iv && !(IVRequirement() == INTERNALLY_GENERATED_IV || IVRequirement() == UNIQUE_IV || !IsResynchronizable()))
00083                 throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV");
00084 }
00085 
00086 const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs &params)
00087 {
00088         const byte *iv;
00089         if (params.GetValue(Name::IV(), iv))
00090                 ThrowIfInvalidIV(iv);
00091         else
00092                 ThrowIfResynchronizable();
00093         return iv;
00094 }
00095 
00096 void SimpleKeyingInterface::GetNextIV(RandomNumberGenerator &rng, byte *IV)
00097 {
00098         rng.GenerateBlock(IV, IVSize());
00099 }
00100 
00101 void BlockTransformation::ProcessAndXorMultipleBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t numberOfBlocks) const
00102 {
00103         unsigned int blockSize = BlockSize();
00104         while (numberOfBlocks--)
00105         {
00106                 ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
00107                 inBlocks += blockSize;
00108                 outBlocks += blockSize;
00109                 if (xorBlocks)
00110                         xorBlocks += blockSize;
00111         }
00112 }
00113 
00114 unsigned int BlockTransformation::BlockAlignment() const
00115 {
00116         return GetAlignmentOf<word32>();
00117 }
00118 
00119 void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
00120 {
00121         assert(MinLastBlockSize() == 0);        // this function should be overriden otherwise
00122 
00123         if (length == MandatoryBlockSize())
00124                 ProcessData(outString, inString, length);
00125         else if (length != 0)
00126                 throw NotImplemented("StreamTransformation: this object does't support a special last block");
00127 }
00128 
00129 unsigned int RandomNumberGenerator::GenerateBit()
00130 {
00131         return GenerateByte() & 1;
00132 }
00133 
00134 byte RandomNumberGenerator::GenerateByte()
00135 {
00136         byte b;
00137         GenerateBlock(&b, 1);
00138         return b;
00139 }
00140 
00141 word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
00142 {
00143         word32 range = max-min;
00144         const int maxBits = BitPrecision(range);
00145 
00146         word32 value;
00147 
00148         do
00149         {
00150                 GenerateBlock((byte *)&value, sizeof(value));
00151                 value = Crop(value, maxBits);
00152         } while (value > range);
00153 
00154         return value+min;
00155 }
00156 
00157 void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
00158 {
00159         ArraySink s(output, size);
00160         GenerateIntoBufferedTransformation(s, BufferedTransformation::NULL_CHANNEL, size);
00161 }
00162 
00163 void RandomNumberGenerator::DiscardBytes(size_t n)
00164 {
00165         GenerateIntoBufferedTransformation(TheBitBucket(), BufferedTransformation::NULL_CHANNEL, n);
00166 }
00167 
00168 void RandomNumberGenerator::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
00169 {
00170         FixedSizeSecBlock<byte, 256> buffer;
00171         while (length)
00172         {
00173                 size_t len = UnsignedMin(buffer.size(), length);
00174                 GenerateBlock(buffer, len);
00175                 target.ChannelPut(channel, buffer, len);
00176                 length -= len;
00177         }
00178 }
00179 
00180 //! see NullRNG()
00181 class ClassNullRNG : public RandomNumberGenerator
00182 {
00183 public:
00184         std::string AlgorithmName() const {return "NullRNG";}
00185         void GenerateBlock(byte *output, size_t size) {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
00186 };
00187 
00188 RandomNumberGenerator & NullRNG()
00189 {
00190         static ClassNullRNG s_nullRNG;
00191         return s_nullRNG;
00192 }
00193 
00194 bool HashTransformation::TruncatedVerify(const byte *digestIn, size_t digestLength)
00195 {
00196         ThrowIfInvalidTruncatedSize(digestLength);
00197         SecByteBlock digest(digestLength);
00198         TruncatedFinal(digest, digestLength);
00199         return memcmp(digest, digestIn, digestLength) == 0;
00200 }
00201 
00202 void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
00203 {
00204         if (size > DigestSize())
00205                 throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
00206 }
00207 
00208 unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
00209 {
00210         const BufferedTransformation *t = AttachedTransformation();
00211         return t ? t->GetMaxWaitObjectCount() : 0;
00212 }
00213 
00214 void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
00215 {
00216         BufferedTransformation *t = AttachedTransformation();
00217         if (t)
00218                 t->GetWaitObjects(container, callStack);  // reduce clutter by not adding to stack here
00219 }
00220 
00221 void BufferedTransformation::Initialize(const NameValuePairs &parameters, int propagation)
00222 {
00223         assert(!AttachedTransformation());
00224         IsolatedInitialize(parameters);
00225 }
00226 
00227 bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
00228 {
00229         assert(!AttachedTransformation());
00230         return IsolatedFlush(hardFlush, blocking);
00231 }
00232 
00233 bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
00234 {
00235         assert(!AttachedTransformation());
00236         return IsolatedMessageSeriesEnd(blocking);
00237 }
00238 
00239 byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
00240 {
00241         if (channel.empty())
00242                 return CreatePutSpace(size);
00243         else
00244                 throw NoChannelSupport();
00245 }
00246 
00247 size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
00248 {
00249         if (channel.empty())
00250                 return Put2(begin, length, messageEnd, blocking);
00251         else
00252                 throw NoChannelSupport();
00253 }
00254 
00255 size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
00256 {
00257         if (channel.empty())
00258                 return PutModifiable2(begin, length, messageEnd, blocking);
00259         else
00260                 return ChannelPut2(channel, begin, length, messageEnd, blocking);
00261 }
00262 
00263 bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
00264 {
00265         if (channel.empty())
00266                 return Flush(completeFlush, propagation, blocking);
00267         else
00268                 throw NoChannelSupport();
00269 }
00270 
00271 bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
00272 {
00273         if (channel.empty())
00274                 return MessageSeriesEnd(propagation, blocking);
00275         else
00276                 throw NoChannelSupport();
00277 }
00278 
00279 lword BufferedTransformation::MaxRetrievable() const
00280 {
00281         if (AttachedTransformation())
00282                 return AttachedTransformation()->MaxRetrievable();
00283         else
00284                 return CopyTo(TheBitBucket());
00285 }
00286 
00287 bool BufferedTransformation::AnyRetrievable() const
00288 {
00289         if (AttachedTransformation())
00290                 return AttachedTransformation()->AnyRetrievable();
00291         else
00292         {
00293                 byte b;
00294                 return Peek(b) != 0;
00295         }
00296 }
00297 
00298 size_t BufferedTransformation::Get(byte &outByte)
00299 {
00300         if (AttachedTransformation())
00301                 return AttachedTransformation()->Get(outByte);
00302         else
00303                 return Get(&outByte, 1);
00304 }
00305 
00306 size_t BufferedTransformation::Get(byte *outString, size_t getMax)
00307 {
00308         if (AttachedTransformation())
00309                 return AttachedTransformation()->Get(outString, getMax);
00310         else
00311         {
00312                 ArraySink arraySink(outString, getMax);
00313                 return (size_t)TransferTo(arraySink, getMax);
00314         }
00315 }
00316 
00317 size_t BufferedTransformation::Peek(byte &outByte) const
00318 {
00319         if (AttachedTransformation())
00320                 return AttachedTransformation()->Peek(outByte);
00321         else
00322                 return Peek(&outByte, 1);
00323 }
00324 
00325 size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
00326 {
00327         if (AttachedTransformation())
00328                 return AttachedTransformation()->Peek(outString, peekMax);
00329         else
00330         {
00331                 ArraySink arraySink(outString, peekMax);
00332                 return (size_t)CopyTo(arraySink, peekMax);
00333         }
00334 }
00335 
00336 lword BufferedTransformation::Skip(lword skipMax)
00337 {
00338         if (AttachedTransformation())
00339                 return AttachedTransformation()->Skip(skipMax);
00340         else
00341                 return TransferTo(TheBitBucket(), skipMax);
00342 }
00343 
00344 lword BufferedTransformation::TotalBytesRetrievable() const
00345 {
00346         if (AttachedTransformation())
00347                 return AttachedTransformation()->TotalBytesRetrievable();
00348         else
00349                 return MaxRetrievable();
00350 }
00351 
00352 unsigned int BufferedTransformation::NumberOfMessages() const
00353 {
00354         if (AttachedTransformation())
00355                 return AttachedTransformation()->NumberOfMessages();
00356         else
00357                 return CopyMessagesTo(TheBitBucket());
00358 }
00359 
00360 bool BufferedTransformation::AnyMessages() const
00361 {
00362         if (AttachedTransformation())
00363                 return AttachedTransformation()->AnyMessages();
00364         else
00365                 return NumberOfMessages() != 0;
00366 }
00367 
00368 bool BufferedTransformation::GetNextMessage()
00369 {
00370         if (AttachedTransformation())
00371                 return AttachedTransformation()->GetNextMessage();
00372         else
00373         {
00374                 assert(!AnyMessages());
00375                 return false;
00376         }
00377 }
00378 
00379 unsigned int BufferedTransformation::SkipMessages(unsigned int count)
00380 {
00381         if (AttachedTransformation())
00382                 return AttachedTransformation()->SkipMessages(count);
00383         else
00384                 return TransferMessagesTo(TheBitBucket(), count);
00385 }
00386 
00387 size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
00388 {
00389         if (AttachedTransformation())
00390                 return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
00391         else
00392         {
00393                 unsigned int maxMessages = messageCount;
00394                 for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
00395                 {
00396                         size_t blockedBytes;
00397                         lword transferredBytes;
00398 
00399                         while (AnyRetrievable())
00400                         {
00401                                 transferredBytes = LWORD_MAX;
00402                                 blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
00403                                 if (blockedBytes > 0)
00404                                         return blockedBytes;
00405                         }
00406 
00407                         if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
00408                                 return 1;
00409 
00410                         bool result = GetNextMessage();
00411                         assert(result);
00412                 }
00413                 return 0;
00414         }
00415 }
00416 
00417 unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
00418 {
00419         if (AttachedTransformation())
00420                 return AttachedTransformation()->CopyMessagesTo(target, count, channel);
00421         else
00422                 return 0;
00423 }
00424 
00425 void BufferedTransformation::SkipAll()
00426 {
00427         if (AttachedTransformation())
00428                 AttachedTransformation()->SkipAll();
00429         else
00430         {
00431                 while (SkipMessages()) {}
00432                 while (Skip()) {}
00433         }
00434 }
00435 
00436 size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
00437 {
00438         if (AttachedTransformation())
00439                 return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
00440         else
00441         {
00442                 assert(!NumberOfMessageSeries());
00443 
00444                 unsigned int messageCount;
00445                 do
00446                 {
00447                         messageCount = UINT_MAX;
00448                         size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
00449                         if (blockedBytes)
00450                                 return blockedBytes;
00451                 }
00452                 while (messageCount != 0);
00453 
00454                 lword byteCount;
00455                 do
00456                 {
00457                         byteCount = ULONG_MAX;
00458                         size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
00459                         if (blockedBytes)
00460                                 return blockedBytes;
00461                 }
00462                 while (byteCount != 0);
00463 
00464                 return 0;
00465         }
00466 }
00467 
00468 void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
00469 {
00470         if (AttachedTransformation())
00471                 AttachedTransformation()->CopyAllTo(target, channel);
00472         else
00473         {
00474                 assert(!NumberOfMessageSeries());
00475                 while (CopyMessagesTo(target, UINT_MAX, channel)) {}
00476         }
00477 }
00478 
00479 void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
00480 {
00481         if (AttachedTransformation())
00482                 AttachedTransformation()->SetRetrievalChannel(channel);
00483 }
00484 
00485 size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
00486 {
00487         PutWord(false, order, m_buf, value);
00488         return ChannelPut(channel, m_buf, 2, blocking);
00489 }
00490 
00491 size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
00492 {
00493         PutWord(false, order, m_buf, value);
00494         return ChannelPut(channel, m_buf, 4, blocking);
00495 }
00496 
00497 size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
00498 {
00499         return ChannelPutWord16(NULL_CHANNEL, value, order, blocking);
00500 }
00501 
00502 size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
00503 {
00504         return ChannelPutWord32(NULL_CHANNEL, value, order, blocking);
00505 }
00506 
00507 size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
00508 {
00509         byte buf[2] = {0, 0};
00510         size_t len = Peek(buf, 2);
00511 
00512         if (order)
00513                 value = (buf[0] << 8) | buf[1];
00514         else
00515                 value = (buf[1] << 8) | buf[0];
00516 
00517         return len;
00518 }
00519 
00520 size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
00521 {
00522         byte buf[4] = {0, 0, 0, 0};
00523         size_t len = Peek(buf, 4);
00524 
00525         if (order)
00526                 value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
00527         else
00528                 value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];
00529 
00530         return len;
00531 }
00532 
00533 size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
00534 {
00535         return (size_t)Skip(PeekWord16(value, order));
00536 }
00537 
00538 size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
00539 {
00540         return (size_t)Skip(PeekWord32(value, order));
00541 }
00542 
00543 void BufferedTransformation::Attach(BufferedTransformation *newOut)
00544 {
00545         if (AttachedTransformation() && AttachedTransformation()->Attachable())
00546                 AttachedTransformation()->Attach(newOut);
00547         else
00548                 Detach(newOut);
00549 }
00550 
00551 void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
00552 {
00553         GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
00554 }
00555 
00556 class PK_DefaultEncryptionFilter : public Unflushable<Filter>
00557 {
00558 public:
00559         PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
00560                 : m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
00561         {
00562                 Detach(attachment);
00563         }
00564 
00565         size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
00566         {
00567                 FILTER_BEGIN;
00568                 m_plaintextQueue.Put(inString, length);
00569 
00570                 if (messageEnd)
00571                 {
00572                         {
00573                         size_t plaintextLength;
00574                         if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
00575                                 throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
00576                         size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
00577 
00578                         SecByteBlock plaintext(plaintextLength);
00579                         m_plaintextQueue.Get(plaintext, plaintextLength);
00580                         m_ciphertext.resize(ciphertextLength);
00581                         m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
00582                         }
00583                         
00584                         FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
00585                 }
00586                 FILTER_END_NO_MESSAGE_END;
00587         }
00588 
00589         RandomNumberGenerator &m_rng;
00590         const PK_Encryptor &m_encryptor;
00591         const NameValuePairs &m_parameters;
00592         ByteQueue m_plaintextQueue;
00593         SecByteBlock m_ciphertext;
00594 };
00595 
00596 BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
00597 {
00598         return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
00599 }
00600 
00601 class PK_DefaultDecryptionFilter : public Unflushable<Filter>
00602 {
00603 public:
00604         PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
00605                 : m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
00606         {
00607                 Detach(attachment);
00608         }
00609 
00610         size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
00611         {
00612                 FILTER_BEGIN;
00613                 m_ciphertextQueue.Put(inString, length);
00614 
00615                 if (messageEnd)
00616                 {
00617                         {
00618                         size_t ciphertextLength;
00619                         if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
00620                                 throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
00621                         size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
00622 
00623                         SecByteBlock ciphertext(ciphertextLength);
00624                         m_ciphertextQueue.Get(ciphertext, ciphertextLength);
00625                         m_plaintext.resize(maxPlaintextLength);
00626                         m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
00627                         if (!m_result.isValidCoding)
00628                                 throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
00629                         }
00630 
00631                         FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
00632                 }
00633                 FILTER_END_NO_MESSAGE_END;
00634         }
00635 
00636         RandomNumberGenerator &m_rng;
00637         const PK_Decryptor &m_decryptor;
00638         const NameValuePairs &m_parameters;
00639         ByteQueue m_ciphertextQueue;
00640         SecByteBlock m_plaintext;
00641         DecodingResult m_result;
00642 };
00643 
00644 BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
00645 {
00646         return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
00647 }
00648 
00649 size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
00650 {
00651         std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00652         return SignAndRestart(rng, *m, signature, false);
00653 }
00654 
00655 size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
00656 {
00657         std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00658         m->Update(message, messageLen);
00659         return SignAndRestart(rng, *m, signature, false);
00660 }
00661 
00662 size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength, 
00663         const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
00664 {
00665         std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00666         InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
00667         m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00668         return SignAndRestart(rng, *m, signature, false);
00669 }
00670 
00671 bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
00672 {
00673         std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00674         return VerifyAndRestart(*m);
00675 }
00676 
00677 bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLength) const
00678 {
00679         std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00680         InputSignature(*m, signature, signatureLength);
00681         m->Update(message, messageLen);
00682         return VerifyAndRestart(*m);
00683 }
00684 
00685 DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
00686 {
00687         std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00688         return RecoverAndRestart(recoveredMessage, *m);
00689 }
00690 
00691 DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage, 
00692         const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, 
00693         const byte *signature, size_t signatureLength) const
00694 {
00695         std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00696         InputSignature(*m, signature, signatureLength);
00697         m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00698         return RecoverAndRestart(recoveredMessage, *m);
00699 }
00700 
00701 void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00702 {
00703         GeneratePrivateKey(rng, privateKey);
00704         GeneratePublicKey(rng, privateKey, publicKey);
00705 }
00706 
00707 void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00708 {
00709         GenerateStaticPrivateKey(rng, privateKey);
00710         GenerateStaticPublicKey(rng, privateKey, publicKey);
00711 }
00712 
00713 void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00714 {
00715         GenerateEphemeralPrivateKey(rng, privateKey);
00716         GenerateEphemeralPublicKey(rng, privateKey, publicKey);
00717 }
00718 
00719 NAMESPACE_END
00720 
00721 #endif

Generated on Fri Jun 1 11:11:20 2007 for Crypto++ by  doxygen 1.5.2