
CRYPTO OFFICER GUIDE and
USER GUIDE

Crypto++™ Library
Version 5.3.0

FIPS 140-2 Level 1 Validation

http://www.cryptopp.com

Vendor: Wei Dai

Version Date: 12/06/2006
Revision: 0.5

http://www.cryptopp.com/

 8/14/2007

ii

Revision History
Date Revision Description
October 27, 2006 0.1 Copied and updated from 5.2.3 Guide.
August 14, 2007 0.2 Remove mention of dlltest.dsp.
November 23, 2006 0.3 Responded to comments from testing lab.
December 6, 2006 0.4 Updated Test Application instructions for VC++ 2005.
December 6, 2006 0.5 Updated DLLTest output.

Copyright Notice

© 2006, Wei Dai. All rights reserved.
This document may be copied without the author’s permission provided that it is copied in its
entirety without any modification.

 8/14/2007

iii

TABLE OF CONTENTS
1 Introduction ... 1

1.1 Audience ... 1
1.2 Required Reading .. 1
1.3 FIPS Glossary ... 1

2 Crypto Officer Guide .. 2
2.1 Downloaded Library ... 2
2.2 Application-Installed Library .. 4

3 User Guide ... 4
3.1 Approved Mode of Operation ... 4
3.2 Management of CSPs .. 5
3.3 Self-Tests .. 5
3.4 Error Handling .. 6
3.5 Development Tips ... 6

APPENDIX A: Test Application Guide .. 7
A.1 Purpose of this Guide .. 7
A.2 Packaged Files .. 7
A.3 Building the Application ... 7
A.4 Running the Application ... 8

APPENDIX B: Source Code Description ... 9
B.1 Purpose of this Document ... 9
B.2 Source Code Files ... 9
B.3 Correspondence... 11

 8/14/2007

1

1 Introduction
1.1 Audience
This document is written for developers and administrators who use or administer the
FIPS validated Crypto++ library, versions 5.3.0. The library has been formally evaluated
by a NIST-approved National Voluntary Laboratory Accreditation Program and has been
certified as conforming with FIPS standard 140-2 level 1. The validated library is
available in a 32-bit variant and a 64-bit variant, and unless otherwise noted, the
information in this document applies to both variants.

For those administering the installation and configuration of the library, the Crypto
Officer Guide provides critical information describing the necessary steps to ensure that
the validated library is used.

For application developers seeking FIPS validation1 of their application, use of the
Crypto++ library can greatly simplify the evaluation process. By strictly following the
procedures in the User Guide, developers can ensure that the application is using the
library’s cryptographic algorithms and security functions in a FIPS compliant manner.

1.2 Required Reading
This document refers to information and sections in the following documents:

 Crypto++ Security Policy — Intended for use by anyone planning to use or
administer the Crypto++ library in a FIPS approved manner, this non-proprietary
document explains how the library meets requirements of FIPS 140-2 level 1.

 Crypto++ API Reference — Intended for use by developers, this document defines
the Crypto++ library object classes, methods, and parameters that must be instantiated
in an application to implement cryptographic algorithms and security functions.

In addition to the Crypto++ documents listed above, readers can educate themselves on
the requirements, spirit, and intent of FIPS 140-2. For details, refer to FIPS 140-2
Security Requirements for Cryptographic Modules.

1.3 FIPS Glossary
This section defines terms from the FIPS standard that are used in this guide.

Critical security
parameter (CSP)

Security-related information (e.g., secret and private cryptographic
keys, and authentication data such as passwords and PINs) whose
disclosure or modification can compromise the security of a
cryptographic module.

Cryptographic
module

The executable form of the loaded Crypto++ library. This includes the
executing cryptographic algorithms and security functions and
hardware devices like the CPU and registers that may store or operate
using critical security parameters. The cryptographic module does not

1 Other validating or certifying programs may also recognize FIPS validations. Check with the specific
certification program before commencing your application development.

 8/14/2007

2

include the calling application

FIPS-approved
security function

For this standard, a security function (e.g., cryptographic algorithm,
cryptographic key management technique, or authentication
technique) that is either

 specified in an Approved standard,

 adopted in an Approved standard and specified either in an
appendix of the Approved standard or in a document referenced by
the Approved standard, or

 specified in the list of Approved security functions

Approved mode
of operation

A mode of the cryptographic module that employs only Approved
security functions (not to be confused with a specific mode of an
Approved security function, e.g., DES CBC mode

Crypto Officer An entity (e.g., person, service) that installs or configures the
Crypto++ library

User An entity (e.g., application, process) that accesses the services.

2 Crypto Officer Guide
This section describes the responsibilities of the Crypto Officer to ensure that the
validated Crypto++ library is used. The library can either be downloaded directly from
the Crypto++ website or be installed as part of an application’s installation package.

2.1 Downloaded Library
This section describes the steps to follow if the library is downloaded directly from the
Crypto++ website.

2.1.1 Downloading
The Crypto++ library can be downloaded from http://www.cryptopp.com. There are
multiple forms and versions of the library available on the website so the Crypto Officer
should ensure that the correct FIPS validated version of the library is downloaded. The
DLL form of the library (cryptopp.dll) has undergone the FIPS validation process, while
the source code and static library forms of the library have not. Both 32-bit and 64-bit
variants of the validated Crypto++ DLL version 5.3.0 can be found in the distribution
package cryptopp530-DLL-msvc2005.zip (in directories named “win32” and “x64”
respectively). Note that the debug versions of the DLL, included in the packages for
development aid, are not validated.

2.1.2 Verifying Integrity
After downloading the library, its integrity should be verified to ensure that it is intact
and not tampered with over the wire. This step is not required for FIPS compliance, but is
recommended by the vendor.

The library is digitally signed using the author’s PGP private key. If the Crypto Officer’s
system does not have a PGP verification utility, you can obtain a free utility called GNU

http://www.cryptopp.com/

 8/14/2007

3

Privacy Guard from http://www.gnupg.org. The following steps show how to use GNU
Privacy Guard Version 1.06 to verify the public key and integrity of the library:

1. Import the public key (provided with the library) into your keyring, as follows:
C:\cryptopp >gpg --import pubkey.asc
gpg: key 04549843: public key imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

C:\cryptopp >

2. Verify the signature of the library file, as follows:
C:\cryptopp >..\gpg cryptopp530-DLL-msvc2005.zip.sig
gpg: Signature made 10/27/06 16:58:25 using RSA key ID 04549843
gpg: Good signature from "Wei Dai (Crypto++ Code Signing Key)
<cryptopp@weidai.c
Could not find a valid trust path to the key. Let's see whether we
can assign some missing owner trust values.

No path leading to one of our keys found.

gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
gpg: Fingerprint: F1F2 7D64 0CAA 3C65 763D 2508 F190 1AEB 0454 9843

The first two lines of output indicate the signature status. Note that the above
command produces a warning that the public key is not certified. This warning is
expected, as other trusted parties do not sign the key. Verify the key in the next
step.

3. Verify the public key by comparing the key fingerprint (in the last line of
command output above) to the fingerprint specified in the Crypto++ Security
Policy obtainable from the NIST web site http://csrc.nist.gov/cryptval/.

2.1.3 Installing and Protecting the Library
As described in the Security Policy, the library relies on certain operating system security
features, such as password-based authentication. A crypto officer may impose additional
authentication requirements such as smart card or biometric identification before
allowing access to the library.

To ensure that the library remains intact and unmodified, the Crypto Officer should
install it in a protected location (e.g., in a protected file system or secure configuration
management system). It should be in a location that is read-accessible to only authorized
users and write-accessible to only authorized crypto officers of the library.

2.1.4 Building and Running a Test Application
The Crypto Officer can confirm correct installation of the library by building and running
a test application. For version 5.3.0 of the library, Microsoft Visual C++ .NET 2005 is
required. Refer to “APPENDIX A: Test Application Guide” for more information.

Comment [j1]: Is this still the same fingerprint
for version 5.3.0?

Comment [WD2]: Yes

http://www.gnupg.org/
http://csrc.nist.gov/cryptval/

 8/14/2007

4

2.2 Application-Installed Library
If the library is installed as part of application’s installation package, the Crypto Officer
needs to follow the instructions described only in Section 2.1.3 “Installing and Protecting
the Library”.

3 User Guide
This guide describes the responsibilities of and guidance for Users of the Crypto++
library to ensure that the library is used in a FIPS compliant manner. Developers can use
this guide as a FIPS compliance check-list for application development using the
validated Crypto++ library.

3.1 Choosing the 32-bit or the 64-bit Variant
The validated Crypto++ library is available as a 32-bit DLL or a 64-bit DLL. They are
both FIPS validated, and are functionally identical except that the 64-bit variant is
compiled to use x86-64 instructions and 64-bit Windows APIs.

For some cryptographic algorithms, such as RSA, DSA, and SHA-2, the 64-bit variant
provides a significant speed increase over the 32-bit variant, and therefore it is suggested
that the 64-bit variant be used if compatibility with 32-bit operating systems is not
required.

3.2 Approved Mode of Operation
The FIPS standards refer to an Approved Mode of Operation. A FIPS compliant
application is allowed to execute non-Approved security functions. However, whenever
the application does this, it is not running in an Approved Mode of Operation. In other
words, an application is not operating in an Approved mode when it executes non-
Approved security functions.

Note that there are some cryptographic algorithm types that do not have an Approved
algorithm, but commercially available algorithms are Allowed to be used. For example,
no FIPS standard for key establishment exists, but Diffie-Hellman key agreement and
RSA encryption for key transport are allowed in Approved mode.

The validated Crypto++ DLL implements only those algorithms allowed to be used in
Approved mode of operation. The Crypto++ Security Policy lists the security functions
and their object classes as implemented in the library. To see the detailed interface
descriptions for these services, look up the respective implementation object class in the
Crypto++ API Reference.

If your application needs to use any non-Approved algorithm, you can use the other
forms of the Crypto++ library (static library or source code) that have not been validated.
However, to claim that your application includes a validated cryptographic module
operating in an Approved mode, your application must use the validated version of the
library and call at least one Approved security function. Comment [WD3]: I’ve deleted the entire

paragraph after this one about DES and SHA-2 not
being in the DLL. DES has been withdrawn as FIPS
so I think no explanation is necessary at this point.

 8/14/2007

5

3.3 Management of CSPs
The “Cryptographic Key Management” section of the Security Policy describes
requirements related to management of CSPs that must be satisfied by applications. This
section provides further additional guidance.

3.3.1 Identifying Critical Security Parameters
Each application needs to determine the CSPs that it generates, stores, uses, etc. For
example, passwords, integrity checksums, secret and private keys are all considered
different types of CSPs. These need to be generated, stored, and destroyed in an
Approved manner.

3.3.2 Generation
Use available Crypto++ classes in the validated library for key generation since they have
been validated as described in the Security Policy.

3.3.3 Storage
If a key needs to be stored in persistent media, follow FIPS requirements for protecting
the CSP, as appropriate for the application.

3.3.4 Destruction
CSPs should be deleted and wiped from the system when they are no longer needed. This
includes CSPs that are kept in memory, a registry, or a file. Per FIPS requirements, they
should be overwritten such that they cannot be recovered.

The in-memory representations of keys and other CSPs in the library are automatically
wiped since they are zeroized in the C++ destructors of their respective Crypto++ objects.
However, applications should ensure that class destructors are in fact called for all CSPs.
Destructors are always called (by the compiled code) for CSP objects allocated on the
stack. However, if a CSP is memory-allocated on the heap, the application should
make sure to call its delete operator, even if an exception occurs.

3.4 Self-Tests
As described in the “Self-Tests” section of the Security Policy, the Crypto++ library
automatically runs power-up self-tests when the DLL is loaded. Additionally, although
not FIPS required, application developers, if they choose, can initiate these tests on-
demand by calling the DoPowerUpSelfTest function.

Applications can check the status of the self-tests by calling the
GetPowerUpSelfTestStatus function. A return value of
POWER_UP_SELF_TEST_PASSED indicates that all self-tests have succeeded. If any
one of the self-tests has failed, the function returns the value
POWER_UP_SELF_TEST_FAILED. In the failure case, any API calls to cryptographic
functions will throw an error. As described in section 3.5 “Error Handling”, applications
should gracefully handle errors thrown by the library.

 8/14/2007

6

3.5 Error Handling
Crypto++ reports errors by throwing C++ exceptions. See the Crypto++ API Reference
for a list of possible exceptions. Applications may handle errors by catching exceptions,
reinitializing the Crypto++ object that threw the exception, correcting the condition that
caused the error, and trying again.

The “Finite State Model” in the Security Policy describes various states, including error
states, of the library.

3.6 Development Tips
This section provides general Crypto++ development-related guidance that is not
necessarily relevant to FIPS compliance.

3.6.1 Heap Memory Management
Because it’s possible for the Crypto++ DLL to delete objects allocated by the calling
application, they must use the same C++ memory heap. Three methods are provided to
achieve this.

1. The calling application can tell Crypto++ what heap to use. This method is
required when the calling application uses a non-standard heap.

2. Crypto++ can tell the calling application what heap to use. This method is
required when the calling application uses a statically linked C++ Run Time
Library. (Method 1 does not work in this case because the Crypto++ DLL is
initialized before the calling application’s heap is initialized.)

3. Crypto++ can use the heap provided by the calling application’s dynamically
linked C++ Run Time Library. The calling application must make sure that the
dynamically linked C++ Run Time Library is initialized before Crypto++ is
loaded.

 When Crypto++ attaches to a new process, it searches all modules loaded into the
process space for exported functions “GetNewAndDeleteForCryptoPP” and
“SetNewAndDeleteFromCryptoPP”. If one of these functions is found, Crypto++ uses
methods 1 or 2, respectively, by calling the function. Otherwise, method 3 is used.

3.6.2 Block Ciphers
Symmetric block ciphers (AES, DES, or TDES) cannot be used alone. They should be
combined with a cipher mode such as cipher block chaining (CBC) mode in order to
overcome known weaknesses of the block cipher’s native mode, “electronic code book”
(ECB) mode.

A block cipher can be combined with an appropriate cipher mode by constructing each
object separately (e.g., AES and CBC) and then calling them one after the other.
Alternatively, a templatized version of the cipher mode class, which takes in a block
cipher object as a parameter, can be used to perform both operations automatically.

 8/14/2007

7

APPENDIX A: Test Application Guide

The Crypto++ library is accompanied with a test application package that contains
sample code demonstrating how to use the Crypto++ API on the validated Crypto++
library. The package also contains a set of build files to build the test application on the
Windows development environment, which can be used to verify that the Crypto++
library is properly installed.

On startup, the library automatically runs FIPS-required self-tests that confirm correct
operation of FIPS-approved cryptographic algorithms and security functions. The sample
application demonstrates how to check for the status of these self-tests. It also contains
other tests and calls to Crypto++ exported functions demonstrating use of various FIPS-
approved cryptographic operations.

A.1 Purpose of this Guide
This guide provides instructions for compiling the test application’s source code to
produce a DLLTest.exe application. The procedures in this guide assume that the
Crypto++ DLL package has been downloaded, unzipped, and verified into a project
directory as described in Section 2.1 Downloaded Library.

A.2 Packaged Files
The test application package is delivered as a Microsoft Visual C++ project to be
installed in a Microsoft Visual C++ .NET 2005 Integrated Development Environment. It
contains the following files:

 DLLTest.vcproj — Microsoft Visual C++ project file

 DLLTest.cpp — Test application source code

A.3 Building the Application
This section describes the steps required to build the test application.

A.3.1 Opening the Test Application Project File
Start the Microsoft Visual C++ .NET 2005 program and open the DLLTest.vcproj
project file.

A.3.2 Examining the sample code
The test application exercises various cryptographic functionality and outputs the results
to the console. It also simulates a failure of the power up self-test, catching the exception
and re-running the self-test successfully before using any FIPS-approved cryptographic
algorithms or security functions.

A.3.3 Running the Build Command
1. Select an appropriate build configuration using the Build / Configuration Manager

command.

 8/14/2007

8

2. Build DLLTest.exe by selecting the DLLTest project in Solution Explorer, and
then selecting the Build / Project Only / Build Only DLLTest command in
Microsoft Visual C++.

3. You may see the error message “LINK : fatal error LNK1181: cannot open input file
'.\win32\dll_output\debug\cryptopp.lib'” in which case copy cryptopp.lib and
cryptopp.dll into the above directory, and run the Build / Project Only / Build Only
DLLTest command again. Note that the build configuration of cryptopp.lib and
cryptopp.dll must match the build configuration of DLLTest.

A.4 Running the Application
When you run the test application from a command prompt, an output of the power-up
self-tests and conditional tests is presented. The test application also simulates some
failures demonstrating how exceptions are caught and handled. Here’s a sample output:

C:\cryptopp\Win32\dll_output\debug>DLLTest.exe

0. Automatic power-up self test passed.
1. Caught expected exception when simulating self test failure.
Exception message follows: Cryptographic algorithms are disabled
after a power-up self test failed.
2. Re-do power-up self test passed.
3. DES-EDE3-CFB Encryption/decryption succeeded.
4. SHA-1 hash succeeded.
5. DSA key generation succeeded.
6. DSA key encode/decode succeeded.
7. DSA signature and verification succeeded.
8. DSA signature verification successfully detected bad
signature.
9. Caught expected exception when using invalid key length.
Exception message follows: DES-EDE3: 5 is not a valid key length

FIPS 140-2 Sample Application completed normally.

C:\cryptopp\Win32\dll_output\debug>

The following describes the output in more detail:

• Line number 0 indicates that the automatic self-test passed.

• Line number 1 occurs because the test application substitutes an incorrect known
value in place of a correct known value, causing a test to fail. This throws an
exception. The test application outputs the message shown.

• Line number 2 indicates that the self-test was redone and passed.

• Lines numbers 3 through 8 indicate success of the sited Approved operations.

• Line number 9 indicates a key with an invalid length was used.

 8/14/2007

9

APPENDIX B: Source Code Description
The Crypto++ library is a collection of open source cryptographic algorithms and
security functions, many of which have been freely available in the public domain for
some time. The DLL form of the library, which is FIPS validated, contains only
algorithms that are either FIPS-approved or allowed to be used in a FIPS mode of
operation. For more information, see the Crypto++ Security Policy.

For convenience, the library provides a C++ interface for all of the native interfaces
(most of which were written in the C language), reducing the programming burden for
developers writing applications in C++. The most recent version includes a filter interface
that brings even more consistency to the programming level.

This document describes the design of the software and source code modules from which
the DLL form of the library is generated. The source code modules are provided for
inspection along with the DLL.

B.1 Purpose of this Document
This document provides design information needed by evaluators certifying the Crypto++
DLL for FIPS 140-2 level 1. This document also fulfills the FIPS requirement for a
Software Design Specification.

The “Source Code Files” section lists all of the files that make up the Crypto++ DLL.
Short descriptions identify the purpose of files directly relevant to the evaluation.

The description in the “Correspondence” section helps evaluators map claims made in
the Security Policy to their concrete implementations in the source code.

B.2 Source Code Files
This section lists all of the files that make up the Crypto++ DLL. Short descriptions
identify the purpose of files that are directly relevant to the evaluation. Some general
purpose files support operations in many files. For example, algebra.cpp performs
various math and algebra operations. Such files do not have specialized descriptions.

aes.h
algebra.h, algebra.cpp
algparam.h,
algparam.cpp

argnames.h
asn.h, asn.cpp
basecode.h,
basecode.cpp

cbcmac.h, cbcmac.cpp CBC-MAC/TDES
channels.h, channels.cpp
config.h Compile-time configuration options
cryptlib.h, cryptlib.cpp Abstract base classes and other interface definitions
des.h, des.cpp Triple-DES
dessp.cpp
dh.h, dh.cpp Diffie-Hellman

 8/14/2007

10

dll.h, dll.cpp
dsa.h, dsa.cpp DSA
ec2n.h, ec2n.cpp Elliptic Curve over GF(2^n)
eccrypto.h, eccrypto.cpp Elliptic Curve Cryptographic, including ECDSA
ecp.h, ecp.cpp Elliptic Curve over GF(p) for prime p
eprecomp.h,
eprecomp.cpp

files.h, files.cpp
filters.h, filters.cpp Implementation of various filter classes
fips140.h, fips140.cpp FIPS-140 related classes and functions, excluding the power-

on self tests.
fipstest.cpp Power-on self tests required by FIPS-140
fltrimpl.h
gf2n.h, gf2n.cpp
gfpcrypt.h , gfpcrypt.cpp Implementation of schemes based on DL over GF(p),

including DSA.
hex.h, hex.cpp
hmac.h, hmac.cpp HMAC/SHA-1, HMAC/SHA-2
integer.h, integer.cpp
iterhash.h, iterhash.cpp
mdc.h
misc.h, misc.cpp
modarith.h
modes.h, modes.cpp Block cipher modes of operation
modexppc.h,
modexppc.cpp

mqueue.h, mqueue.cpp
mqv.h
nbtheory.h,
nbtheory.cpp

oaep.h, oaep.cpp
oids.h
osrng.h, osrng.cpp OS provided/seeded RNGs, including AutoSeededX917RNG
pch.h, pch.cpp
pkcspad.h, pkcspad.cpp
pubkey.h, pubkey.cpp Classes for implementing public key schemes
queue.h, queue.cpp
randpool.h,
randpool.cpp

rdtables.cpp
rijndael.h, rijndael.cpp Rijndael (AES)
rng.h, rng.cpp
rsa.h, rsa.cpp RSA
secblock.h
seckey.h

 8/14/2007

11

sha.h, sha.cpp SHA-1, SHA-2
simple.h, simple.cpp
skipjack.h, skipjack.cpp SkipJack
smartptr.h
stdcpp.h
strciphr.h, strciphr.cpp
tea.cpp
trdlocal.h, trdlocal.cpp
words.h
cryptopp.rc

B.3 Correspondence
This section specifies the correspondence between the design of the software components
of the cryptographic module and (a) its security policy and (b) its services.

B.3.1 Correspondence to Security Policy
The cryptographic module design collects publicly available cryptographic algorithms
and security functions into a C++ object library. For evaluation purposes, FIPS approved
and allowed algorithms are separately compiled into a DLL form, which can be used by a
calling application.

The DLL does not itself contain any cryptographic keys or critical security parameters
(CSPs). A calling application may use services within the cryptographic module to
operate on cryptographic keys and CSPs. Thus the application is responsible for key and
CSP management.

The cryptographic module specifies 2 separate roles (a Crypto officer and a User). Access
control (to available services) and separation of roles is specified in the Security Policy.

B.3.2 Correspondence to Services
Software modules within the DLL implement various services that are FIPS-approved or
allowed. This section describes the main modules implementing these services. Use these
modules as starting points for examining all of the modules related to the specific service.
For example, the main module for DES is des.cpp. The evaluator can examine this
module and all included header and sources files to determine whether the complete set
properly implements the given service.

Service Type Algorithm Main module

Symmetric Cipher AES rijndael.cpp and modes.cpp

Triple DES (2-key) des.cpp and modes.cpp

Triple DES (3-key) des.cpp and modes.cpp

Skipjack skipjack.cpp

Digital Signature and Key
Generation

RSA Signature rsa.cpp

DSA dsa.cpp

ECDSA eccrypto.cpp

 8/14/2007

12

Message Digest SHA-1/SHA-2 sha.cpp

Message Authentication
CBC-MAC/TDES cbcmac.cpp

HMAC/SHA-1, HMAC/SHA-2 hmac.cpp

Random Number Generator ANSI X9.31-1998 - Appendix A osrng.cpp

Key Transport Diffie-Hellman Key Agreement dh.cpp

RSA Encryption rsa.cpp

Other Functions On-demand Self-Test fipstest.cpp

Self-Test Status fips140.cpp

	1 Introduction
	1.1 Audience
	1.2 Required Reading
	1.3 FIPS Glossary

	2 Crypto Officer Guide
	2.1 Downloaded Library
	2.1.1 Downloading
	2.1.2 Verifying Integrity
	2.1.3 Installing and Protecting the Library
	2.1.4 Building and Running a Test Application

	2.2 Application-Installed Library

	3 User Guide
	3.1 Choosing the 32-bit or the 64-bit Variant
	3.2 Approved Mode of Operation
	3.3 Management of CSPs
	3.3.1 Identifying Critical Security Parameters
	3.3.2 Generation
	3.3.3 Storage
	3.3.4 Destruction

	3.4 Self-Tests
	3.5 Error Handling
	3.6 Development Tips
	3.6.1 Heap Memory Management
	3.6.2 Block Ciphers
	APPENDIX A: Test Application Guide
	A.1 Purpose of this Guide
	A.2 Packaged Files
	A.3 Building the Application
	A.3.1 Opening the Test Application Project File
	A.3.2 Examining the sample code
	A.3.3 Running the Build Command
	A.4 Running the Application

	APPENDIX B: Source Code Description
	B.1 Purpose of this Document
	B.2 Source Code Files
	B.3 Correspondence
	B.3.1 Correspondence to Security Policy
	B.3.2 Correspondence to Services

