polynomi.cpp

00001 // polynomi.cpp - written and placed in the public domain by Wei Dai
00002 
00003 // Part of the code for polynomial evaluation and interpolation
00004 // originally came from Hal Finney's public domain secsplit.c.
00005 
00006 #include "pch.h"
00007 #include "polynomi.h"
00008 #include "secblock.h"
00009 
00010 #include <sstream>
00011 #include <iostream>
00012 
00013 NAMESPACE_BEGIN(CryptoPP)
00014 
00015 template <class T>
00016 void PolynomialOver<T>::Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring)
00017 {
00018         m_coefficients.resize(parameter.m_coefficientCount);
00019         for (unsigned int i=0; i<m_coefficients.size(); ++i)
00020                 m_coefficients[i] = ring.RandomElement(rng, parameter.m_coefficientParameter);
00021 }
00022 
00023 template <class T>
00024 void PolynomialOver<T>::FromStr(const char *str, const Ring &ring)
00025 {
00026         std::istringstream in((char *)str);
00027         bool positive = true;
00028         CoefficientType coef;
00029         unsigned int power;
00030 
00031         while (in)
00032         {
00033                 std::ws(in);
00034                 if (in.peek() == 'x')
00035                         coef = ring.MultiplicativeIdentity();
00036                 else
00037                         in >> coef;
00038 
00039                 std::ws(in);
00040                 if (in.peek() == 'x')
00041                 {
00042                         in.get();
00043                         std::ws(in);
00044                         if (in.peek() == '^')
00045                         {
00046                                 in.get();
00047                                 in >> power;
00048                         }
00049                         else
00050                                 power = 1;
00051                 }
00052                 else
00053                         power = 0;
00054 
00055                 if (!positive)
00056                         coef = ring.Inverse(coef);
00057 
00058                 SetCoefficient(power, coef, ring);
00059 
00060                 std::ws(in);
00061                 switch (in.get())
00062                 {
00063                 case '+':
00064                         positive = true;
00065                         break;
00066                 case '-':
00067                         positive = false;
00068                         break;
00069                 default:
00070                         return;         // something's wrong with the input string
00071                 }
00072         }
00073 }
00074 
00075 template <class T>
00076 unsigned int PolynomialOver<T>::CoefficientCount(const Ring &ring) const
00077 {
00078         unsigned count = m_coefficients.size();
00079         while (count && ring.Equal(m_coefficients[count-1], ring.Identity()))
00080                 count--;
00081         const_cast<std::vector<CoefficientType> &>(m_coefficients).resize(count);
00082         return count;
00083 }
00084 
00085 template <class T>
00086 typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::GetCoefficient(unsigned int i, const Ring &ring) const 
00087 {
00088         return (i < m_coefficients.size()) ? m_coefficients[i] : ring.Identity();
00089 }
00090 
00091 template <class T>
00092 PolynomialOver<T>&  PolynomialOver<T>::operator=(const PolynomialOver<T>& t)
00093 {
00094         if (this != &t)
00095         {
00096                 m_coefficients.resize(t.m_coefficients.size());
00097                 for (unsigned int i=0; i<m_coefficients.size(); i++)
00098                         m_coefficients[i] = t.m_coefficients[i];
00099         }
00100         return *this;
00101 }
00102 
00103 template <class T>
00104 PolynomialOver<T>& PolynomialOver<T>::Accumulate(const PolynomialOver<T>& t, const Ring &ring)
00105 {
00106         unsigned int count = t.CoefficientCount(ring);
00107 
00108         if (count > CoefficientCount(ring))
00109                 m_coefficients.resize(count, ring.Identity());
00110 
00111         for (unsigned int i=0; i<count; i++)
00112                 ring.Accumulate(m_coefficients[i], t.GetCoefficient(i, ring));
00113 
00114         return *this;
00115 }
00116 
00117 template <class T>
00118 PolynomialOver<T>& PolynomialOver<T>::Reduce(const PolynomialOver<T>& t, const Ring &ring)
00119 {
00120         unsigned int count = t.CoefficientCount(ring);
00121 
00122         if (count > CoefficientCount(ring))
00123                 m_coefficients.resize(count, ring.Identity());
00124 
00125         for (unsigned int i=0; i<count; i++)
00126                 ring.Reduce(m_coefficients[i], t.GetCoefficient(i, ring));
00127 
00128         return *this;
00129 }
00130 
00131 template <class T>
00132 typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::EvaluateAt(const CoefficientType &x, const Ring &ring) const
00133 {
00134         int degree = Degree(ring);
00135 
00136         if (degree < 0)
00137                 return ring.Identity();
00138 
00139         CoefficientType result = m_coefficients[degree];
00140         for (int j=degree-1; j>=0; j--)
00141         {
00142                 result = ring.Multiply(result, x);
00143                 ring.Accumulate(result, m_coefficients[j]);
00144         }
00145         return result;
00146 }
00147 
00148 template <class T>
00149 PolynomialOver<T>& PolynomialOver<T>::ShiftLeft(unsigned int n, const Ring &ring)
00150 {
00151         unsigned int i = CoefficientCount(ring) + n;
00152         m_coefficients.resize(i, ring.Identity());
00153         while (i > n)
00154         {
00155                 i--;
00156                 m_coefficients[i] = m_coefficients[i-n];
00157         }
00158         while (i)
00159         {
00160                 i--;
00161                 m_coefficients[i] = ring.Identity();
00162         }
00163         return *this;
00164 }
00165 
00166 template <class T>
00167 PolynomialOver<T>& PolynomialOver<T>::ShiftRight(unsigned int n, const Ring &ring)
00168 {
00169         unsigned int count = CoefficientCount(ring);
00170         if (count > n)
00171         {
00172                 for (unsigned int i=0; i<count-n; i++)
00173                         m_coefficients[i] = m_coefficients[i+n];
00174                 m_coefficients.resize(count-n, ring.Identity());
00175         }
00176         else
00177                 m_coefficients.resize(0, ring.Identity());
00178         return *this;
00179 }
00180 
00181 template <class T>
00182 void PolynomialOver<T>::SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring)
00183 {
00184         if (i >= m_coefficients.size())
00185                 m_coefficients.resize(i+1, ring.Identity());
00186         m_coefficients[i] = value;
00187 }
00188 
00189 template <class T>
00190 void PolynomialOver<T>::Negate(const Ring &ring)
00191 {
00192         unsigned int count = CoefficientCount(ring);
00193         for (unsigned int i=0; i<count; i++)
00194                 m_coefficients[i] = ring.Inverse(m_coefficients[i]);
00195 }
00196 
00197 template <class T>
00198 void PolynomialOver<T>::swap(PolynomialOver<T> &t)
00199 {
00200         m_coefficients.swap(t.m_coefficients);
00201 }
00202 
00203 template <class T>
00204 bool PolynomialOver<T>::Equals(const PolynomialOver<T>& t, const Ring &ring) const
00205 {
00206         unsigned int count = CoefficientCount(ring);
00207 
00208         if (count != t.CoefficientCount(ring))
00209                 return false;
00210 
00211         for (unsigned int i=0; i<count; i++)
00212                 if (!ring.Equal(m_coefficients[i], t.m_coefficients[i]))
00213                         return false;
00214 
00215         return true;
00216 }
00217 
00218 template <class T>
00219 PolynomialOver<T> PolynomialOver<T>::Plus(const PolynomialOver<T>& t, const Ring &ring) const
00220 {
00221         unsigned int i;
00222         unsigned int count = CoefficientCount(ring);
00223         unsigned int tCount = t.CoefficientCount(ring);
00224 
00225         if (count > tCount)
00226         {
00227                 PolynomialOver<T> result(ring, count);
00228 
00229                 for (i=0; i<tCount; i++)
00230                         result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]);
00231                 for (; i<count; i++)
00232                         result.m_coefficients[i] = m_coefficients[i];
00233 
00234                 return result;
00235         }
00236         else
00237         {
00238                 PolynomialOver<T> result(ring, tCount);
00239 
00240                 for (i=0; i<count; i++)
00241                         result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]);
00242                 for (; i<tCount; i++)
00243                         result.m_coefficients[i] = t.m_coefficients[i];
00244 
00245                 return result;
00246         }
00247 }
00248 
00249 template <class T>
00250 PolynomialOver<T> PolynomialOver<T>::Minus(const PolynomialOver<T>& t, const Ring &ring) const
00251 {
00252         unsigned int i;
00253         unsigned int count = CoefficientCount(ring);
00254         unsigned int tCount = t.CoefficientCount(ring);
00255 
00256         if (count > tCount)
00257         {
00258                 PolynomialOver<T> result(ring, count);
00259 
00260                 for (i=0; i<tCount; i++)
00261                         result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]);
00262                 for (; i<count; i++)
00263                         result.m_coefficients[i] = m_coefficients[i];
00264 
00265                 return result;
00266         }
00267         else
00268         {
00269                 PolynomialOver<T> result(ring, tCount);
00270 
00271                 for (i=0; i<count; i++)
00272                         result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]);
00273                 for (; i<tCount; i++)
00274                         result.m_coefficients[i] = ring.Inverse(t.m_coefficients[i]);
00275 
00276                 return result;
00277         }
00278 }
00279 
00280 template <class T>
00281 PolynomialOver<T> PolynomialOver<T>::Inverse(const Ring &ring) const
00282 {
00283         unsigned int count = CoefficientCount(ring);
00284         PolynomialOver<T> result(ring, count);
00285 
00286         for (unsigned int i=0; i<count; i++)
00287                 result.m_coefficients[i] = ring.Inverse(m_coefficients[i]);
00288 
00289         return result;
00290 }
00291 
00292 template <class T>
00293 PolynomialOver<T> PolynomialOver<T>::Times(const PolynomialOver<T>& t, const Ring &ring) const
00294 {
00295         if (IsZero(ring) || t.IsZero(ring))
00296                 return PolynomialOver<T>();
00297 
00298         unsigned int count1 = CoefficientCount(ring), count2 = t.CoefficientCount(ring);
00299         PolynomialOver<T> result(ring, count1 + count2 - 1);
00300 
00301         for (unsigned int i=0; i<count1; i++)
00302                 for (unsigned int j=0; j<count2; j++)
00303                         ring.Accumulate(result.m_coefficients[i+j], ring.Multiply(m_coefficients[i], t.m_coefficients[j]));
00304 
00305         return result;
00306 }
00307 
00308 template <class T>
00309 PolynomialOver<T> PolynomialOver<T>::DividedBy(const PolynomialOver<T>& t, const Ring &ring) const
00310 {
00311         PolynomialOver<T> remainder, quotient;
00312         Divide(remainder, quotient, *this, t, ring);
00313         return quotient;
00314 }
00315 
00316 template <class T>
00317 PolynomialOver<T> PolynomialOver<T>::Modulo(const PolynomialOver<T>& t, const Ring &ring) const
00318 {
00319         PolynomialOver<T> remainder, quotient;
00320         Divide(remainder, quotient, *this, t, ring);
00321         return remainder;
00322 }
00323 
00324 template <class T>
00325 PolynomialOver<T> PolynomialOver<T>::MultiplicativeInverse(const Ring &ring) const
00326 {
00327         return Degree(ring)==0 ? ring.MultiplicativeInverse(m_coefficients[0]) : ring.Identity();
00328 }
00329 
00330 template <class T>
00331 bool PolynomialOver<T>::IsUnit(const Ring &ring) const
00332 {
00333         return Degree(ring)==0 && ring.IsUnit(m_coefficients[0]);
00334 }
00335 
00336 template <class T>
00337 std::istream& PolynomialOver<T>::Input(std::istream &in, const Ring &ring)
00338 {
00339         char c;
00340         unsigned int length = 0;
00341         SecBlock<char> str(length + 16);
00342         bool paren = false;
00343 
00344         std::ws(in);
00345 
00346         if (in.peek() == '(')
00347         {
00348                 paren = true;
00349                 in.get();
00350         }
00351 
00352         do
00353         {
00354                 in.read(&c, 1);
00355                 str[length++] = c;
00356                 if (length >= str.size())
00357                         str.Grow(length + 16);
00358         }
00359         // if we started with a left paren, then read until we find a right paren,
00360         // otherwise read until the end of the line
00361         while (in && ((paren && c != ')') || (!paren && c != '\n')));
00362 
00363         str[length-1] = '\0';
00364         *this = PolynomialOver<T>(str, ring);
00365 
00366         return in;
00367 }
00368 
00369 template <class T>
00370 std::ostream& PolynomialOver<T>::Output(std::ostream &out, const Ring &ring) const
00371 {
00372         unsigned int i = CoefficientCount(ring);
00373         if (i)
00374         {
00375                 bool firstTerm = true;
00376 
00377                 while (i--)
00378                 {
00379                         if (m_coefficients[i] != ring.Identity())
00380                         {
00381                                 if (firstTerm)
00382                                 {
00383                                         firstTerm = false;
00384                                         if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity()))
00385                                                 out << m_coefficients[i];
00386                                 }
00387                                 else
00388                                 {
00389                                         CoefficientType inverse = ring.Inverse(m_coefficients[i]);
00390                                         std::ostringstream pstr, nstr;
00391 
00392                                         pstr << m_coefficients[i];
00393                                         nstr << inverse;
00394 
00395                                         if (pstr.str().size() <= nstr.str().size())
00396                                         {
00397                                                 out << " + "; 
00398                                                 if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity()))
00399                                                         out << m_coefficients[i];
00400                                         }
00401                                         else
00402                                         {
00403                                                 out << " - "; 
00404                                                 if (!i || !ring.Equal(inverse, ring.MultiplicativeIdentity()))
00405                                                         out << inverse;
00406                                         }
00407                                 }
00408 
00409                                 switch (i)
00410                                 {
00411                                 case 0:
00412                                         break;
00413                                 case 1:
00414                                         out << "x";
00415                                         break;
00416                                 default:
00417                                         out << "x^" << i;
00418                                 }
00419                         }
00420                 }
00421         }
00422         else
00423         {
00424                 out << ring.Identity();
00425         }
00426         return out;
00427 }
00428 
00429 template <class T>
00430 void PolynomialOver<T>::Divide(PolynomialOver<T> &r, PolynomialOver<T> &q, const PolynomialOver<T> &a, const PolynomialOver<T> &d, const Ring &ring)
00431 {
00432         unsigned int i = a.CoefficientCount(ring);
00433         const int dDegree = d.Degree(ring);
00434 
00435         if (dDegree < 0)
00436                 throw DivideByZero();
00437 
00438         r = a;
00439         q.m_coefficients.resize(STDMAX(0, int(i - dDegree)));
00440 
00441         while (i > (unsigned int)dDegree)
00442         {
00443                 --i;
00444                 q.m_coefficients[i-dDegree] = ring.Divide(r.m_coefficients[i], d.m_coefficients[dDegree]);
00445                 for (int j=0; j<=dDegree; j++)
00446                         ring.Reduce(r.m_coefficients[i-dDegree+j], ring.Multiply(q.m_coefficients[i-dDegree], d.m_coefficients[j]));
00447         }
00448 
00449         r.CoefficientCount(ring);       // resize r.m_coefficients
00450 }
00451 
00452 // ********************************************************
00453 
00454 // helper function for Interpolate() and InterpolateAt()
00455 template <class T>
00456 void RingOfPolynomialsOver<T>::CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const
00457 {
00458         for (unsigned int j=0; j<n; ++j)
00459                 alpha[j] = y[j];
00460 
00461         for (unsigned int k=1; k<n; ++k)
00462         {
00463                 for (unsigned int j=n-1; j>=k; --j)
00464                 {
00465                         m_ring.Reduce(alpha[j], alpha[j-1]);
00466 
00467                         CoefficientType d = m_ring.Subtract(x[j], x[j-k]);
00468                         if (!m_ring.IsUnit(d))
00469                                 throw InterpolationFailed();
00470                         alpha[j] = m_ring.Divide(alpha[j], d);
00471                 }
00472         }
00473 }
00474 
00475 template <class T>
00476 typename RingOfPolynomialsOver<T>::Element RingOfPolynomialsOver<T>::Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const
00477 {
00478         assert(n > 0);
00479 
00480         std::vector<CoefficientType> alpha(n);
00481         CalculateAlpha(alpha, x, y, n);
00482 
00483         std::vector<CoefficientType> coefficients((size_t)n, m_ring.Identity());
00484         coefficients[0] = alpha[n-1];
00485 
00486         for (int j=n-2; j>=0; --j)
00487         {
00488                 for (unsigned int i=n-j-1; i>0; i--)
00489                         coefficients[i] = m_ring.Subtract(coefficients[i-1], m_ring.Multiply(coefficients[i], x[j]));
00490 
00491                 coefficients[0] = m_ring.Subtract(alpha[j], m_ring.Multiply(coefficients[0], x[j]));
00492         }
00493 
00494         return PolynomialOver<T>(coefficients.begin(), coefficients.end());
00495 }
00496 
00497 template <class T>
00498 typename RingOfPolynomialsOver<T>::CoefficientType RingOfPolynomialsOver<T>::InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const
00499 {
00500         assert(n > 0);
00501 
00502         std::vector<CoefficientType> alpha(n);
00503         CalculateAlpha(alpha, x, y, n);
00504 
00505         CoefficientType result = alpha[n-1];
00506         for (int j=n-2; j>=0; --j)
00507         {
00508                 result = m_ring.Multiply(result, m_ring.Subtract(position, x[j]));
00509                 m_ring.Accumulate(result, alpha[j]);
00510         }
00511         return result;
00512 }
00513 
00514 template <class Ring, class Element>
00515 void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n)
00516 {
00517         for (unsigned int i=0; i<n; i++)
00518         {
00519                 Element t = ring.MultiplicativeIdentity();
00520                 for (unsigned int j=0; j<n; j++)
00521                         if (i != j)
00522                                 t = ring.Multiply(t, ring.Subtract(x[i], x[j]));
00523                 w[i] = ring.MultiplicativeInverse(t);
00524         }
00525 }
00526 
00527 template <class Ring, class Element>
00528 void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n)
00529 {
00530         assert(n > 0);
00531 
00532         std::vector<Element> a(2*n-1);
00533         unsigned int i;
00534 
00535         for (i=0; i<n; i++)
00536                 a[n-1+i] = ring.Subtract(position, x[i]);
00537 
00538         for (i=n-1; i>1; i--)
00539                 a[i-1] = ring.Multiply(a[2*i], a[2*i-1]);
00540 
00541         a[0] = ring.MultiplicativeIdentity();
00542 
00543         for (i=0; i<n-1; i++)
00544         {
00545                 std::swap(a[2*i+1], a[2*i+2]);
00546                 a[2*i+1] = ring.Multiply(a[i], a[2*i+1]);
00547                 a[2*i+2] = ring.Multiply(a[i], a[2*i+2]);
00548         }
00549 
00550         for (i=0; i<n; i++)
00551                 v[i] = ring.Multiply(a[n-1+i], w[i]);
00552 }
00553 
00554 template <class Ring, class Element>
00555 Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n)
00556 {
00557         Element result = ring.Identity();
00558         for (unsigned int i=0; i<n; i++)
00559                 ring.Accumulate(result, ring.Multiply(y[i], v[i]));
00560         return result;
00561 }
00562 
00563 // ********************************************************
00564 
00565 template <class T, int instance>
00566 const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::Zero()
00567 {
00568         return Singleton<ThisType>().Ref();
00569 }
00570 
00571 template <class T, int instance>
00572 const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::One()
00573 {
00574         return Singleton<ThisType, NewOnePolynomial>().Ref();
00575 }
00576 
00577 NAMESPACE_END

Generated on Sat Dec 23 02:07:09 2006 for Crypto++ by  doxygen 1.5.1-p1