modarith.h

00001 #ifndef CRYPTOPP_MODARITH_H
00002 #define CRYPTOPP_MODARITH_H
00003 
00004 // implementations are in integer.cpp
00005 
00006 #include "cryptlib.h"
00007 #include "misc.h"
00008 #include "integer.h"
00009 #include "algebra.h"
00010 
00011 NAMESPACE_BEGIN(CryptoPP)
00012 
00013 CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>;
00014 CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>;
00015 CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
00016 
00017 //! ring of congruence classes modulo n
00018 /*! \note this implementation represents each congruence class as the smallest non-negative integer in that class */
00019 class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
00020 {
00021 public:
00022 
00023         typedef int RandomizationParameter;
00024         typedef Integer Element;
00025 
00026         ModularArithmetic(const Integer &modulus = Integer::One())
00027                 : m_modulus(modulus), m_result((word)0, modulus.reg.size()) {}
00028 
00029         ModularArithmetic(const ModularArithmetic &ma)
00030                 : m_modulus(ma.m_modulus), m_result((word)0, m_modulus.reg.size()) {}
00031 
00032         ModularArithmetic(BufferedTransformation &bt);  // construct from BER encoded parameters
00033 
00034         virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
00035 
00036         void DEREncode(BufferedTransformation &bt) const;
00037 
00038         void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
00039         void BERDecodeElement(BufferedTransformation &in, Element &a) const;
00040 
00041         const Integer& GetModulus() const {return m_modulus;}
00042         void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
00043 
00044         virtual bool IsMontgomeryRepresentation() const {return false;}
00045 
00046         virtual Integer ConvertIn(const Integer &a) const
00047                 {return a%m_modulus;}
00048 
00049         virtual Integer ConvertOut(const Integer &a) const
00050                 {return a;}
00051 
00052         const Integer& Half(const Integer &a) const;
00053 
00054         bool Equal(const Integer &a, const Integer &b) const
00055                 {return a==b;}
00056 
00057         const Integer& Identity() const
00058                 {return Integer::Zero();}
00059 
00060         const Integer& Add(const Integer &a, const Integer &b) const;
00061 
00062         Integer& Accumulate(Integer &a, const Integer &b) const;
00063 
00064         const Integer& Inverse(const Integer &a) const;
00065 
00066         const Integer& Subtract(const Integer &a, const Integer &b) const;
00067 
00068         Integer& Reduce(Integer &a, const Integer &b) const;
00069 
00070         const Integer& Double(const Integer &a) const
00071                 {return Add(a, a);}
00072 
00073         const Integer& MultiplicativeIdentity() const
00074                 {return Integer::One();}
00075 
00076         const Integer& Multiply(const Integer &a, const Integer &b) const
00077                 {return m_result1 = a*b%m_modulus;}
00078 
00079         const Integer& Square(const Integer &a) const
00080                 {return m_result1 = a.Squared()%m_modulus;}
00081 
00082         bool IsUnit(const Integer &a) const
00083                 {return Integer::Gcd(a, m_modulus).IsUnit();}
00084 
00085         const Integer& MultiplicativeInverse(const Integer &a) const
00086                 {return m_result1 = a.InverseMod(m_modulus);}
00087 
00088         const Integer& Divide(const Integer &a, const Integer &b) const
00089                 {return Multiply(a, MultiplicativeInverse(b));}
00090 
00091         Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
00092 
00093         void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
00094 
00095         unsigned int MaxElementBitLength() const
00096                 {return (m_modulus-1).BitCount();}
00097 
00098         unsigned int MaxElementByteLength() const
00099                 {return (m_modulus-1).ByteCount();}
00100 
00101         Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const
00102                 // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
00103         { 
00104                 return Element( rng , Integer( (long) 0) , m_modulus - Integer( (long) 1 )   ) ; 
00105         }   
00106 
00107         bool operator==(const ModularArithmetic &rhs) const
00108                 {return m_modulus == rhs.m_modulus;}
00109 
00110         static const RandomizationParameter DefaultRandomizationParameter ;
00111 
00112 protected:
00113         Integer m_modulus;
00114         mutable Integer m_result, m_result1;
00115 
00116 };
00117 
00118 // const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
00119 
00120 //! do modular arithmetics in Montgomery representation for increased speed
00121 /*! \note the Montgomery representation represents each congruence class [a] as a*r%n, where r is a convenient power of 2 */
00122 class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
00123 {
00124 public:
00125         MontgomeryRepresentation(const Integer &modulus);       // modulus must be odd
00126 
00127         virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
00128 
00129         bool IsMontgomeryRepresentation() const {return true;}
00130 
00131         Integer ConvertIn(const Integer &a) const
00132                 {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;}
00133 
00134         Integer ConvertOut(const Integer &a) const;
00135 
00136         const Integer& MultiplicativeIdentity() const
00137                 {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;}
00138 
00139         const Integer& Multiply(const Integer &a, const Integer &b) const;
00140 
00141         const Integer& Square(const Integer &a) const;
00142 
00143         const Integer& MultiplicativeInverse(const Integer &a) const;
00144 
00145         Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
00146                 {return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
00147 
00148         void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
00149                 {AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
00150 
00151 private:
00152         Integer m_u;
00153         mutable SecAlignedWordBlock m_workspace;
00154 };
00155 
00156 NAMESPACE_END
00157 
00158 #endif

Generated on Sat Dec 23 02:07:08 2006 for Crypto++ by  doxygen 1.5.1-p1